2025-03-28 18:41:16 -05:00

172 lines
4.7 KiB
Rust

// trait defines functionalitity a particular type has and
// can share with other types. Can use traits to define shared
// behavior in an abstract way. Can use trait bounds to specify
// that a generic type can be any type that has certain behavior
use std::fmt::Display;
// Like Haskell's deriving
// Except orphans aren't allowed at all
pub trait Summary {
// fn summarize(&self) -> String; // Structs must provide own implementation
fn summarize(&self) -> String {
String::from("(Read more...)")
}
}
pub struct NewsArticle {
pub headline: String,
pub location: String,
pub author: String,
pub content: String,
}
impl Summary for NewsArticle {
fn summarize(&self) -> String {
format!("{}, by {} ({})", self.headline, self.author, self.location)
}
}
pub struct Tweet {
pub username: String,
pub content: String,
pub reply: bool,
pub retweet: bool,
}
impl Summary for Tweet {
fn summarize(&self) -> String {
format!("{}: {}", self.username, self.content)
}
}
// Should use lifetime annotations when using a reference
// in a variable
struct ImportantExcerpt<'a> {
part: &'a str,
}
fn main() {
let tweet = Tweet {
username: String::from("horse_ebooks"),
content: String::from("of course, as you probably already know, people"),
reply: false,
retweet: false,
};
println!("1 new tweet: {}", tweet.summarize());
// The next lines fail as borrowing
// let r;
// {
// let x = 5;
// r = &x;
// }
// println!("r: {}", r);
let x = 5;
let r = &x;
println!("r: {r}");
let string1 = String::from("abcd");
let string2 = "xyz";
// need a lifetime reference for situations like this
// &i32: a regular reference
// &'a i32: a reference with an explicit lifetime
// &'a mut i32: a mutable reference with an explicit lifetime
let result = longest(string1.as_str(), string2);
println!("The longest string is {result}");
let string1 = String::from("long string is long");
// let result;
{
let string2 = String::from("xyz");
let result = longest(string1.as_str(), string2.as_str());
// result = longest(string1.as_str(), string2.as_str());
println!("The longest string is {result}");
}
// println!("The longest string is {result}");
// the static lifetime
// Can life for the duration of the program
let s: &'static str = "I have a static lifetime";
}
// fn notify<T: Summary>(item1: &T, item2: &T) {}
fn notify(item: &(impl Summary + std::fmt::Display)) {}
fn notify2<T: Summary + std::fmt::Display>(item: &T) {}
fn some_function<T, U>(t: &T, u: &U) -> i32
where
// Similar to haskell :)
T: std::fmt::Display + Clone,
U: Clone + std::fmt::Debug,
{
2
}
// impl<T: Display> ToString for T {}
// <'a> and 'a dispersed in the function parameters are
// lifetime annotations. Lifetimes annotations are needed because
// Rust can't tell whether the reference being returned refers to x or y
// Feels like a similar vibe to Haskell `forall a`.
fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
if x.len() > y.len() {
x
} else {
y
}
}
// lifetime elision rules. Some functions that have common patterns
// with references passed as a parameter have lifetime annotations
// passed implicitly due to soooooo many functions having this
// lifetime annotation pattern used.
//
// Lifetimes on function/method parameters called input lifetimes.
// Lifetimes on return values output lifetimes
//
// 3 Rules for lifetime functions
// 1: Compiler assigns different lifetime parameter to each lifetime
// in each input type
// fn foo(x: &i32) becomes fn foo<'a>(x: &'a i32)
// fn foo(x: &i32, y: &i32) becomes fn foo<'a, 'b>(x: &'a i32, y: &'b i32)
// fn foo(x: &ImportantExcerpt) becomes fn foo<'a, 'b>(x: &'a ImportantExcerpt<'b>)
// 2: If exactly one input lifetime paramter, lifetime applied to all output
// lifetime parameters
// 3: If multiple input lifetime parameters, but one of them is &self or &mut self,
// lifetime of self assigned to all output lifetime parameters
// Lifetime annotations in method definitions
impl<'a> ImportantExcerpt<'a> {
fn level(&self) -> i32 {
3
}
// example of third lifetime elision rule
fn announce_and_return_part(&self, announcement: &str) -> &str {
println!("Attention Please: {announcement}");
self.part
}
}
// Generic Type Paramters, trait bounds, and lifetimes together
fn longest_with_an_announcement<'a, T>(x: &'a str, y: &'a str, ann: T) -> &'a str
where
T: Display,
{
println!("Announcement!: {ann}");
if x.len() > y.len() {
x
} else {
y
}
}