Compare commits

...

4 Commits

Author SHA1 Message Date
0a1f0fa601 code done
Some checks failed
/ Test-Suite (push) Failing after 20s
2025-04-18 23:23:29 -05:00
9abb9d1feb multi stack problem 2025-04-18 16:27:00 -05:00
bcb9d130c7 conversion to new instructions started 2025-04-18 14:06:21 -05:00
cd2071f965 pre AI 2025-04-18 12:21:38 -05:00
7 changed files with 384 additions and 390 deletions

View File

@ -34,6 +34,11 @@ mod utils;
/// ```
/// would have the ; placed at the end of the instruction. Check rush's `tests/instruction_test.rs`
/// file for an example using this code.
///
/// Suggestion: If you need to pull an index from the int stack, make it the first argument
/// to your function.
///
/// If there is an instruction with no stacks as input, must put a comma at the end.
#[proc_macro]
pub fn run_instruction(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
let f = parse_macro_input!(input as Extract);

View File

@ -1,5 +1,8 @@
//! Where the hard work for automatically generating instructions is done.
//! Check `run_instruction!` for more details.
//!
//! This Stack that isn't repeated is the desired output stack.
//! Extract: Function, Stack, State, (`,` Stack)* ;?
//! Extract: Function, Stack, State (`,` Stack)* ;?
//!
//! Function: identifier
//!
@ -56,6 +59,12 @@ impl ToTokens for Extract {
let stacks = &self.stacks;
let aux = &self.aux;
// Gets the counts of each stack passed to the macro held
// similarly to a map as: (stack, count).
//
// Chosen over a HashMap bc these types don't implement Hash
// HashMaps are O(nlogn) at worst this is O(n^2). Largest instruction
// passes 4 stacks so this shouldn't matter in the long run.
let mut counts = Vec::new();
for stack in stacks {
match counts.iter_mut().find(|(x, _)| x == stack) {
@ -64,31 +73,64 @@ impl ToTokens for Extract {
}
}
// Writes the piece of the code that ensures the stacks have enough values
// to function without error.
let conditions = counts.iter().map(|(stack, count)| {
let inner_stack = &stack.0;
quote! { #inner_state.#inner_stack.len() >= #count }
});
let values = stacks.iter().map(|stack| {
// In case the instruction returns None (meaning revert the state),
// need to store the values to return them
let store_values = stacks.iter().enumerate().map(|(i, stack)| {
let inner_stack = &&stack.0;
quote! { #inner_state.#inner_stack.pop().unwrap() }
let var_name = quote::format_ident!("val_{}", i);
quote! { let #var_name = #inner_state.#inner_stack.pop().unwrap(); }
});
// Create the variable names themselves to store the
// popped values.
let value_vars = (0..stacks.len())
.map(|i| quote::format_ident!("val_{}", i))
.collect::<Vec<_>>();
// Create restore code in case None is returned from the function.
let restore_values =
stacks
.iter()
.rev()
.zip(value_vars.iter().rev())
.map(|(stack, var)| {
let inner_stack = &&stack.0;
quote! { #inner_state.#inner_stack.push(#var.clone()); }
});
// The logic for running the function and returning values
// if bad.
let aux_run = match aux {
true => quote! {
if let Some(result) = #inner_func(#(#values),*) {
let result = #inner_func(#(#value_vars.clone()),*);
if let Some(result) = result {
#inner_state.#inner_out_stack.extend(result.iter());
} else {
#(#restore_values)*
}
},
false => quote! {
if let Some(result) = #inner_func(#(#values),*) {
let result = #inner_func(#(#value_vars.clone()),*);
if let Some(result) = result {
#inner_state.#inner_out_stack.push(result);
} else {
#(#restore_values)*
}
},
};
// Where the pieces of the puzzle are put together.
// tokens then used to create the function.
tokens.extend(quote! {
if true #(&& (#conditions))* {
#(#store_values)*
#aux_run
}
});

View File

@ -5,32 +5,29 @@ use crate::push::state::{Gene, PushState};
use super::common::{code_from_exec, code_pop, int_pop};
/// Checks to see if a single gene is a block.
fn _is_block(vals: Vec<Gene>) -> Option<bool> {
Some(match vals[0] {
fn _is_block(a: Gene) -> Option<bool> {
Some(match a {
Gene::Block(_) => true,
_ => false,
})
}
make_instruction_clone!(code, boolean, _is_block, Gene, 1);
/// Checks to see if a single gene is not a block.
fn _is_singular(vals: Vec<Gene>) -> Option<bool> {
Some(_is_block(vals)?.not())
fn _is_singular(a: Gene) -> Option<bool> {
Some(_is_block(a)?.not())
}
make_instruction_clone!(code, boolean, _is_singular, Gene, 1);
/// Returns the length of a block, else 1 if not a block
fn _length(vals: Vec<Gene>) -> Option<i128> {
Some(match &vals[0] {
fn _length(a: Gene) -> Option<i128> {
Some(match &a {
Gene::Block(x) => x.len() as i128,
_ => 1,
})
}
make_instruction_clone!(code, int, _length, Gene, 1);
/// Returns the first item in a block if doable, else None
fn _first(vals: Vec<Gene>) -> Option<Gene> {
match &vals[0] {
fn _first(a: Gene) -> Option<Gene> {
match &a {
Gene::Block(x) => {
if x.len() > 1 {
Some(x[0].clone())
@ -41,11 +38,10 @@ fn _first(vals: Vec<Gene>) -> Option<Gene> {
_ => None,
}
}
make_instruction_clone!(code, code, _first, Gene, 1);
/// Returns the first item in a block if applicable, else None
fn _last(vals: Vec<Gene>) -> Option<Gene> {
match &vals[0] {
fn _last(a: Gene) -> Option<Gene> {
match &a {
Gene::Block(x) => {
if x.len() > 1 {
Some(x.last()?.clone())
@ -56,11 +52,10 @@ fn _last(vals: Vec<Gene>) -> Option<Gene> {
_ => None,
}
}
make_instruction_clone!(code, code, _last, Gene, 1);
/// Returns all but the first code item in a block if applicable, else None
fn _rest(vals: Vec<Gene>) -> Option<Gene> {
match &vals[0] {
fn _rest(a: Gene) -> Option<Gene> {
match &a {
Gene::Block(x) => {
if x.len() > 1 {
Some(Gene::Block(x[1..].to_vec()))
@ -71,11 +66,10 @@ fn _rest(vals: Vec<Gene>) -> Option<Gene> {
_ => None,
}
}
make_instruction_clone!(code, code, _rest, Gene, 1);
/// Returns all but the first code item in a block if applicable, else None
fn _but_last(vals: Vec<Gene>) -> Option<Gene> {
match &vals[0] {
fn _but_last(a: Gene) -> Option<Gene> {
match &a {
Gene::Block(x) => {
let x_len = x.len();
if x_len > 1 {
@ -87,19 +81,17 @@ fn _but_last(vals: Vec<Gene>) -> Option<Gene> {
_ => None,
}
}
make_instruction_clone!(code, code, _but_last, Gene, 1);
/// Returns all the vals wrapped in a code block
fn _wrap_block(vals: Vec<Gene>) -> Option<Gene> {
Some(Gene::Block(vals))
/// Returns a gene wrapped in a block
fn _wrap_block(a: Gene) -> Option<Gene> {
Some(Gene::Block(vec![a]))
}
make_instruction_clone!(code, code, _wrap_block, Gene, 1);
/// Combines two genes into one. Accounts for blocks.
/// If the second gene is a block and the first one isn't,
/// appends the first gene to the second gene.
fn _combine(vals: Vec<Gene>) -> Option<Gene> {
match (&vals[0], &vals[1]) {
fn _combine(a: Gene, b: Gene) -> Option<Gene> {
match (&a, &b) {
(Gene::Block(x), Gene::Block(y)) => {
let x_clone = x.clone();
let mut y_clone = y.clone();
@ -119,7 +111,6 @@ fn _combine(vals: Vec<Gene>) -> Option<Gene> {
(x, y) => Some(Gene::Block(vec![x.clone(), y.clone()])),
}
}
make_instruction_clone!(code, code, _combine, Gene, 2);
/// Pushes `code_pop` and the top item of the code stack to the exec stack.
/// Top code item gets executed before being removed from code stack.
@ -330,15 +321,9 @@ pub fn code_map(state: &mut PushState) {
/// If top bool is true, execute top element of code/exec stack and skip the second.
/// If false, execute second element and skip the top.
pub fn _if(vals: Vec<Gene>, auxs: Vec<bool>) -> Option<Gene> {
Some(if auxs[0] {
vals[0].clone()
} else {
vals[1].clone()
})
pub fn _if(a: Gene, b: Gene, cond: bool) -> Option<Gene> {
Some(if cond { a } else { b })
}
make_instruction_aux!(code, exec, _if, Gene, 2, boolean, 1, bool);
make_instruction_aux!(exec, exec, _if, Gene, 2, boolean, 1, bool);
/// Evaluates the top code item if the top code is true, else pops it.
pub fn code_when(state: &mut PushState) {
@ -364,20 +349,19 @@ pub fn exec_when(state: &mut PushState) {
/// Pushes true if the second code item is found within the first item.
/// If the first item isn't a block, coerced into one.
pub fn _member(vals: Vec<Gene>) -> Option<bool> {
let block = match vals[0].clone() {
pub fn _member(a: Gene, b: Gene) -> Option<bool> {
let block = match b {
Gene::Block(val) => val,
val => vec![val],
};
Some(block.contains(&vals[1]))
Some(block.contains(&a))
}
make_instruction_clone!(code, boolean, _member, Gene, 2);
/// Pushes the nth item of the top element of the code stack.
/// If top code item isn't a block, wrap one around it.
pub fn _nth(vals: Vec<Gene>, auxs: Vec<i128>) -> Option<Gene> {
let gene_vec = match vals[0].clone() {
pub fn _nth(a: Gene, idx: i128) -> Option<Gene> {
let gene_vec = match a {
Gene::Block(val) => val,
val => vec![val],
};
@ -385,22 +369,19 @@ pub fn _nth(vals: Vec<Gene>, auxs: Vec<i128>) -> Option<Gene> {
if gene_vec_len == 0 {
return None;
}
let ndx = auxs[0].abs() as usize % gene_vec_len;
let ndx = idx.abs() as usize % gene_vec_len;
Some(gene_vec[ndx].clone())
}
make_instruction_aux!(code, code, _nth, Gene, 1, int, 1, i128);
/// Pushes an empty block to the top of a stack.
pub fn _make_empty_block<T>(_: Vec<T>) -> Option<Gene> {
pub fn _make_empty_block<T>() -> Option<Gene> {
Some(Gene::Block(vec![]))
}
make_instruction_clone!(code, code, _make_empty_block, Gene, 0);
make_instruction_clone!(exec, exec, _make_empty_block, Gene, 0);
/// Checks to see if the top item on the code/exec stack is an empty block.
/// True if is, False if not.
pub fn _is_empty_block(vals: Vec<Gene>) -> Option<bool> {
Some(match vals[0].clone() {
pub fn _is_empty_block(a: Gene) -> Option<bool> {
Some(match a {
Gene::Block(val) => {
if val.is_empty() {
true
@ -411,70 +392,64 @@ pub fn _is_empty_block(vals: Vec<Gene>) -> Option<bool> {
_ => false,
})
}
make_instruction_clone!(code, boolean, _is_empty_block, Gene, 1);
make_instruction_clone!(exec, boolean, _is_empty_block, Gene, 1);
/// Returns the size of the top item on the code/exec stack.
pub fn _size(vals: Vec<Gene>) -> Option<i128> {
Some(match vals[0].clone() {
pub fn _size(a: Gene) -> Option<i128> {
Some(match a.clone() {
Gene::Block(val) => val.len() as i128,
_ => 1,
})
}
make_instruction_clone!(code, int, _size, Gene, 1);
make_instruction_clone!(exec, int, _size, Gene, 1);
/// Returns a nested element inside a block based on an int.
pub fn _extract(vals: Vec<Gene>, auxs: Vec<i128>) -> Option<Gene> {
match vals[0].clone() {
pub fn _extract(a: Gene, idx: i128) -> Option<Gene> {
match &a {
block @ Gene::Block(_) => {
let block_len = block.rec_len();
if block_len == 0 {
None
} else {
let ndx = (auxs[0] % block_len as i128).abs() as usize;
Some(vals[0].clone().code_at_point(ndx)?)
let ndx = (idx % block_len as i128).abs() as usize;
Some(a.code_at_point(ndx)?)
}
}
val => Some(val),
_ => Some(a),
}
}
make_instruction_aux!(code, code, _extract, Gene, 1, int, 1, i128);
/// Inserts a gene at a given position in into the top block based off an
/// int from the top of the int stack. The top code item is coerced into a block
/// if needed.
pub fn _insert(vals: Vec<Gene>, auxs: Vec<i128>) -> Option<Gene> {
let mut block = match vals[0].clone() {
pub fn _insert(a: Gene, b: Gene, idx: i128) -> Option<Gene> {
let mut block = match a.clone() {
iblock @ Gene::Block(_) => iblock,
val => Gene::Block(vec![val]),
};
if block.rec_len() == 0 {
return _combine(vec![block, vals[1].clone()]);
return _combine(block, b);
}
let ndx = auxs[0].abs() as usize % block.rec_len();
block.with_code_inserted_at_point(vals[1].clone(), ndx);
let ndx = idx.abs() as usize % block.rec_len();
block.with_code_inserted_at_point(b, ndx);
Some(block)
}
make_instruction_aux!(code, code, _insert, Gene, 2, int, 1, i128);
/// Pushes the first position of the 2nd code item within the top code item.
/// If not found, pushes -1. If top code item isn't a block, returns 0 if top
/// two code items equal, -1 otherwise.
pub fn _first_position(vals: Vec<Gene>) -> Option<i128> {
let bad_cond: bool = match &vals[0] {
pub fn _first_position(a: Gene, b: Gene) -> Option<i128> {
let bad_cond: bool = match &a {
Gene::Block(val) => val.len() == 0,
_ => true,
};
if bad_cond {
if vals[0] == vals[1] {
if a == b {
return Some(0);
}
} else {
match &vals[0] {
match &a {
Gene::Block(val) => {
for (idx, el) in val.iter().enumerate() {
if el == &vals[1] {
if el == &b {
return Some(idx as i128);
}
}
@ -484,11 +459,10 @@ pub fn _first_position(vals: Vec<Gene>) -> Option<i128> {
}
Some(-1)
}
make_instruction_clone!(code, int, _first_position, Gene, 2);
/// Reverses the top block. Does nothing if not a block.
pub fn _reverse(vals: Vec<Gene>) -> Option<Gene> {
Some(match vals[0].clone() {
pub fn _reverse(a: Gene) -> Option<Gene> {
Some(match a {
Gene::Block(mut val) => {
val.reverse();
Gene::Block(val)
@ -496,7 +470,38 @@ pub fn _reverse(vals: Vec<Gene>) -> Option<Gene> {
val => val,
})
}
make_instruction_clone!(code, code, _reverse, Gene, 1);
macro_rules! make_code_instructions {
($stack:ident) => {
make_instruction_new!(_is_block, $stack, boolean, $stack);
make_instruction_new!(_is_singular, $stack, boolean, $stack);
make_instruction_new!(_length, $stack, int, $stack);
make_instruction_new!(_first, $stack, $stack, $stack);
make_instruction_new!(_last, $stack, $stack, $stack);
make_instruction_new!(_rest, $stack, $stack, $stack);
make_instruction_new!(_but_last, $stack, $stack, $stack);
make_instruction_new!(_wrap_block, $stack, $stack, $stack);
make_instruction_new!(_combine, $stack, $stack, $stack, $stack);
make_instruction_new!(_if, $stack, exec, $stack, $stack, boolean);
make_instruction_new!(_member, $stack, boolean, $stack, $stack);
make_instruction_new!(_nth, $stack, $stack, $stack, int);
make_instruction_empty!(_make_empty_block, $stack, $stack, Gene);
make_instruction_new!(_is_empty_block, $stack, boolean, $stack);
make_instruction_new!(_size, $stack, int, $stack);
make_instruction_new!(_extract, $stack, $stack, $stack, int);
make_instruction_new!(_insert, $stack, $stack, $stack, $stack, int);
make_instruction_new!(_first_position, $stack, int, $stack, $stack);
make_instruction_new!(_reverse, $stack, $stack, $stack);
};
}
macro_rules! all_code_instructions {
() => {
make_code_instructions!(code);
make_code_instructions!(exec);
};
}
all_code_instructions!();
#[cfg(test)]
mod tests {
@ -950,24 +955,24 @@ mod tests {
let mut test_state = EMPTY_STATE;
test_state.code = vec![
Gene::GeneInt(0),
Gene::Block(vec![
Gene::GeneInt(0),
Gene::GeneInt(4),
Gene::StateFunc(exec_do_range),
]),
Gene::GeneInt(0),
];
code_member(&mut test_state);
assert_eq!(vec![true], test_state.boolean);
test_state.boolean.clear();
test_state.code = vec![
Gene::GeneInt(0),
Gene::Block(vec![
Gene::GeneInt(5),
Gene::GeneInt(4),
Gene::StateFunc(exec_do_range),
]),
Gene::GeneInt(0),
];
code_member(&mut test_state);
assert_eq!(vec![false], test_state.boolean);

View File

@ -7,74 +7,86 @@ use crate::push::state::PushState;
use rust_decimal::Decimal;
/// Runs logical and on two values
fn _and<T>(vals: Vec<T>) -> Option<T>
fn _and<T>(a: T, b: T) -> Option<T>
where
T: Copy + LogicalTrait,
T: LogicalTrait,
{
Some(vals[0].logical_and(vals[1]))
Some(b.logical_and(a))
}
make_instruction!(boolean, boolean, _and, bool, 2);
/// Runs logical or on two values
fn _or<T>(vals: Vec<T>) -> Option<T>
fn _or<T>(a: T, b: T) -> Option<T>
where
T: Copy + LogicalTrait,
T: LogicalTrait,
{
Some(vals[0].logical_or(vals[1]))
Some(b.logical_or(a))
}
make_instruction!(boolean, boolean, _or, bool, 2);
/// Runs logical not on two values
fn _not<T>(vals: Vec<T>) -> Option<T>
fn _not<T>(a: T) -> Option<T>
where
T: Copy + LogicalTrait,
T: LogicalTrait,
{
Some(vals[0].logical_not())
Some(a.logical_not())
}
make_instruction!(boolean, boolean, _not, bool, 1);
/// Runs logical xor on two values
fn _xor<T>(vals: Vec<T>) -> Option<T>
fn _xor<T>(a: T, b: T) -> Option<T>
where
T: Copy + LogicalTrait,
T: LogicalTrait,
{
Some(vals[0].logical_xor(vals[1]))
Some(b.logical_xor(a))
}
make_instruction!(boolean, boolean, _xor, bool, 2);
/// Inverts the first value and runs logical and on two values
fn _invert_first_then_and<T>(vals: Vec<T>) -> Option<T>
fn _invert_first_then_and<T>(a: T, b: T) -> Option<T>
where
T: Copy + LogicalTrait,
T: LogicalTrait,
{
Some(vals[0].logical_not().logical_and(vals[1]))
Some(a.logical_not().logical_and(b))
}
make_instruction!(boolean, boolean, _invert_first_then_and, bool, 2);
/// Inverts the second value and runs logical and on two values
fn _invert_second_then_and<T>(vals: Vec<T>) -> Option<T>
fn _invert_second_then_and<T>(a: T, b: T) -> Option<T>
where
T: Copy + LogicalTrait,
T: LogicalTrait,
{
Some(vals[0].logical_and(vals[1].logical_not()))
Some(a.logical_and(b.logical_not()))
}
make_instruction!(boolean, boolean, _invert_second_then_and, bool, 2);
fn _from_int<T>(vals: Vec<i128>) -> Option<T>
fn _from_int<T>(a: i128) -> Option<T>
where
T: Copy + CastingTrait,
T: CastingTrait,
{
T::from_int(vals[0])
T::from_int(a)
}
make_instruction_out!(int, boolean, _from_int, i128, 1);
fn _from_float<T>(vals: Vec<Decimal>) -> Option<T>
fn _from_float<T>(a: Decimal) -> Option<T>
where
T: Copy + CastingTrait,
T: CastingTrait,
{
T::from_float(vals[0])
T::from_float(a)
}
make_instruction_out!(float, boolean, _from_float, Decimal, 1);
macro_rules! make_logical_instructions {
($stack:ident) => {
make_instruction_new!(_and, $stack, $stack, $stack, $stack);
make_instruction_new!(_or, $stack, $stack, $stack, $stack);
make_instruction_new!(_not, $stack, $stack, $stack);
make_instruction_new!(_xor, $stack, $stack, $stack, $stack);
make_instruction_new!(_invert_first_then_and, $stack, $stack, $stack, $stack);
make_instruction_new!(_invert_second_then_and, $stack, $stack, $stack, $stack);
make_instruction_new!(_from_int, $stack, $stack, int);
make_instruction_new!(_from_float, $stack, $stack, float);
};
}
macro_rules! all_logical_instructions {
() => {
make_logical_instructions!(boolean);
};
}
all_logical_instructions!();
#[cfg(test)]
mod tests {

View File

@ -1,11 +1,3 @@
use crate::instructions::code::*;
use crate::instructions::common::*;
use crate::instructions::logical::*;
use crate::instructions::numeric::*;
use crate::instructions::vector::*;
use crate::push::state::PushState;
use rush_macro::run_instruction;
#[macro_use]
pub mod macros {
/// A macro that makes a push instruction given: the name of the input stack to use,
@ -305,7 +297,7 @@ pub mod macros {
};
}
/// Runs a function and ensures needed variables are extracted from a state without error
/// Runs a function and ensures the necessary variables are extracted from a state without error
macro_rules! make_instruction_new {
($func:ident, $prefix:ident, $out_stack:ident, $($stacks:ident), *) => {
paste::item! {
@ -316,7 +308,7 @@ pub mod macros {
};
}
/// Runs a function and ensures needed variables are extracted from a state without error while
/// Runs a function and ensures the necessary variables are extracted from a state without error while
/// returning multiple variables from the function
macro_rules! make_instruction_new_aux {
($func:ident, $prefix:ident, $out_stack:ident, $($stacks:ident), *) => {
@ -327,6 +319,20 @@ pub mod macros {
}
};
}
/// Makes an instruction that takes no input stacks. Must specify a type for this
/// one so because the result needs a type, and the compiler can't infer it here :(
macro_rules! make_instruction_empty {
($func:ident, $prefix:ident, $out_stack:ident, $out_type:ty) => {
paste::item! {
pub fn [< $prefix $func >] (state: &mut PushState) {
if let Some(result) = $func::<$out_type>() {
state.$out_stack.push(result);
}
}
}
};
}
}
pub mod code;
@ -338,8 +344,8 @@ pub mod vector;
#[cfg(test)]
mod tests {
use super::*;
use crate::push::state::EMPTY_STATE;
//use super::*;
use crate::push::state::{EMPTY_STATE, PushState};
#[test]
fn make_instruction_new_test() {

View File

@ -15,302 +15,279 @@ use super::utils::{CastingTrait, NumericTrait};
/// Adds two values together.
fn _add<T>(a: T, b: T) -> Option<T>
where
T: Add<Output = T> + Copy,
T: Add<Output = T>,
{
Some(b + a)
}
/// Subtracts two values from each other.
fn _sub<T>(vals: Vec<T>) -> Option<T>
fn _sub<T>(a: T, b: T) -> Option<T>
where
T: Sub<Output = T> + Copy,
T: Sub<Output = T>,
{
Some(vals[1] - vals[0])
Some(b - a)
}
make_instruction!(int, int, _sub, i128, 2);
make_instruction!(float, float, _sub, Decimal, 2);
/// Multiplies two values with each other.
fn _mult<T>(vals: Vec<T>) -> Option<T>
fn _mult<T>(a: T, b: T) -> Option<T>
where
T: Mul<Output = T> + Copy,
{
Some(vals[1] * vals[0])
Some(b * a)
}
make_instruction!(int, int, _mult, i128, 2);
make_instruction!(float, float, _mult, Decimal, 2);
/// Divides two values from each other.
fn _div<T>(vals: Vec<T>) -> Option<T>
fn _div<T>(a: T, b: T) -> Option<T>
where
T: Div<Output = T> + Copy + NumericTrait,
T: Div<Output = T> + NumericTrait,
{
vals[1].checked_div(vals[0])
b.checked_div(a)
}
make_instruction!(int, int, _div, i128, 2);
make_instruction!(float, float, _div, Decimal, 2);
/// Takes the remainder of two values
fn _rem<T>(vals: Vec<T>) -> Option<T>
fn _rem<T>(a: T, b: T) -> Option<T>
where
T: Div<Output = T> + Copy + NumericTrait,
{
vals[1].checked_mod(vals[0])
b.checked_mod(a)
}
make_instruction!(int, int, _rem, i128, 2);
make_instruction!(float, float, _rem, Decimal, 2);
/// Takes the max of two values
fn _max<T>(vals: Vec<T>) -> Option<T>
fn _max<T>(a: T, b: T) -> Option<T>
where
T: Ord + Copy,
T: Ord,
{
Some(max(vals[1], vals[0]))
Some(max(a, b))
}
make_instruction!(int, int, _max, i128, 2);
make_instruction!(float, float, _max, Decimal, 2);
/// Takes the min of two values
fn _min<T>(vals: Vec<T>) -> Option<T>
fn _min<T>(a: T, b: T) -> Option<T>
where
T: Ord + Copy,
T: Ord,
{
Some(min(vals[1], vals[0]))
Some(min(a, b))
}
make_instruction!(int, int, _min, i128, 2);
make_instruction!(float, float, _min, Decimal, 2);
/// Increments a single value by 1
fn _inc<T>(vals: Vec<T>) -> Option<T>
fn _inc<T>(a: T) -> Option<T>
where
T: NumericTrait + Copy,
{
Some(vals[0].increment())
Some(a.increment())
}
make_instruction!(int, int, _inc, i128, 1);
make_instruction!(float, float, _inc, Decimal, 1);
/// Decrements a single value by 1
fn _dec<T>(vals: Vec<T>) -> Option<T>
fn _dec<T>(a: T) -> Option<T>
where
T: NumericTrait + Copy,
T: NumericTrait,
{
Some(vals[0].decrement())
Some(a.decrement())
}
make_instruction!(int, int, _dec, i128, 1);
make_instruction!(float, float, _dec, Decimal, 1);
/// Checks if the 2nd to top value is less than the top value
fn _lt<T>(vals: Vec<T>) -> Option<bool>
fn _lt<T>(a: T, b: T) -> Option<bool>
where
T: Ord + Copy,
T: Ord,
{
Some(vals[1] < vals[0])
Some(b < a)
}
make_instruction!(int, boolean, _lt, i128, 2);
make_instruction!(float, boolean, _lt, Decimal, 2);
/// Checks if the 2nd to top value is greater than the top value
fn _gt<T>(vals: Vec<T>) -> Option<bool>
fn _gt<T>(a: T, b: T) -> Option<bool>
where
T: Ord + Copy,
T: Ord,
{
Some(vals[1] > vals[0])
Some(b > a)
}
make_instruction!(int, boolean, _gt, i128, 2);
make_instruction!(float, boolean, _gt, Decimal, 2);
/// Checks if the 2nd to top value is less than or equal to the top value
fn _lte<T>(vals: Vec<T>) -> Option<bool>
fn _lte<T>(a: T, b: T) -> Option<bool>
where
T: Ord + Copy,
{
Some(vals[1] <= vals[0])
Some(b <= a)
}
make_instruction!(int, boolean, _lte, i128, 2);
make_instruction!(float, boolean, _lte, Decimal, 2);
/// Checks if the 2nd to top value is greater than or equal to the top value
fn _gte<T>(vals: Vec<T>) -> Option<bool>
fn _gte<T>(a: T, b: T) -> Option<bool>
where
T: Ord + Copy,
T: Ord,
{
Some(vals[1] >= vals[0])
Some(b >= a)
}
make_instruction!(int, boolean, _gte, i128, 2);
make_instruction!(float, boolean, _gte, Decimal, 2);
/// Runs sin on a single item.
fn _sin<T>(vals: Vec<T>) -> Option<T>
fn _sin<T>(a: T) -> Option<T>
where
T: Copy + NumericTrait,
T: NumericTrait,
{
vals[0].safe_sin()
a.safe_sin()
}
make_instruction!(int, int, _sin, i128, 1);
make_instruction!(float, float, _sin, Decimal, 1);
/// Runs arcsin on a single item.
fn _arcsin<T>(vals: Vec<T>) -> Option<T>
fn _arcsin<T>(a: T) -> Option<T>
where
T: Copy + NumericTrait,
T: NumericTrait,
{
vals[0].safe_sin()?.inverse()
a.safe_sin()?.inverse()
}
make_instruction!(int, int, _arcsin, i128, 1);
make_instruction!(float, float, _arcsin, Decimal, 1);
/// Runs cos on a single item.
fn _cos<T>(vals: Vec<T>) -> Option<T>
fn _cos<T>(a: T) -> Option<T>
where
T: Copy + NumericTrait,
T: NumericTrait,
{
vals[0].safe_cos()
a.safe_cos()
}
make_instruction!(int, int, _cos, i128, 1);
make_instruction!(float, float, _cos, Decimal, 1);
/// Runs arcsin on a single item.
fn _arccos<T>(vals: Vec<T>) -> Option<T>
fn _arccos<T>(a: T) -> Option<T>
where
T: Copy + NumericTrait,
T: NumericTrait,
{
vals[0].safe_cos()?.inverse()
a.safe_cos()?.inverse()
}
make_instruction!(int, int, _arccos, i128, 1);
make_instruction!(float, float, _arccos, Decimal, 1);
/// Runs tan on a single item.
fn _tan<T>(vals: Vec<T>) -> Option<T>
fn _tan<T>(a: T) -> Option<T>
where
T: Copy + NumericTrait,
T: NumericTrait,
{
vals[0].safe_tan()
a.safe_tan()
}
make_instruction!(int, int, _tan, i128, 1);
make_instruction!(float, float, _tan, Decimal, 1);
/// Runs arctan on a single item.
fn _arctan<T>(vals: Vec<T>) -> Option<T>
fn _arctan<T>(a: T) -> Option<T>
where
T: Copy + NumericTrait,
T: NumericTrait,
{
vals[0].safe_tan()?.inverse()
a.safe_tan()?.inverse()
}
/// Converts a single value from an int to an arbitrary type.
fn _from_int<T>(a: i128) -> Option<T>
where
T: CastingTrait,
{
T::from_int(a)
}
make_instruction!(int, int, _arctan, i128, 1);
make_instruction!(float, float, _arctan, Decimal, 1);
/// Converts a single value from a float to an arbitrary type.
fn _from_int<T>(vals: Vec<i128>) -> Option<T>
fn _from_float<T>(a: Decimal) -> Option<T>
where
T: Copy + CastingTrait,
T: CastingTrait,
{
T::from_int(vals[0])
T::from_float(a)
}
make_instruction_out!(int, float, _from_int, i128, 1);
/// Converts a single value from a float to an arbitrary type.
fn _from_float<T>(vals: Vec<Decimal>) -> Option<T>
/// Converts a bool to a new type.
fn _from_boolean<T>(a: bool) -> Option<T>
where
T: Copy + CastingTrait,
T: CastingTrait,
{
T::from_float(vals[0])
T::from_bool(a)
}
make_instruction_out!(float, int, _from_float, Decimal, 1);
/// Converts a bool to a to a new type.
fn _from_boolean<T>(vals: Vec<bool>) -> Option<T>
where
T: Copy + CastingTrait,
{
T::from_bool(vals[0])
}
make_instruction_out!(boolean, int, _from_boolean, bool, 1);
make_instruction_out!(boolean, float, _from_boolean, bool, 1);
/// Takes the log base 10 of a single Decimal. Acts as a
/// Takes log base 10 of a single Decimal. Acts as a
/// NoOp if the value is 0. If the value is negative, takes
/// the absolute value of the number.
fn _log<T>(vals: Vec<T>) -> Option<T>
fn _log<T>(a: T) -> Option<T>
where
T: Copy + NumericTrait,
T: NumericTrait,
{
vals[0].absolute().safe_log10()
a.absolute().safe_log10()
}
make_instruction!(int, int, _log, i128, 1);
make_instruction!(float, float, _log, Decimal, 1);
/// Takes the exp of a single value. Ints get truncated.
fn _exp<T>(vals: Vec<T>) -> Option<T>
fn _exp<T>(a: T) -> Option<T>
where
T: Copy + NumericTrait,
T: NumericTrait,
{
vals[0].safe_exp()
a.safe_exp()
}
make_instruction!(int, int, _exp, i128, 1);
make_instruction!(float, float, _exp, Decimal, 1);
/// Takes the square root of the absolute value of a single value.
fn _sqrt<T>(vals: Vec<T>) -> Option<T>
fn _sqrt<T>(a: T) -> Option<T>
where
T: Copy + NumericTrait,
T: NumericTrait,
{
vals[0].safe_sqrt()
a.safe_sqrt()
}
make_instruction!(int, int, _sqrt, i128, 1);
make_instruction!(float, float, _sqrt, Decimal, 1);
/// Takes the inverse of a single value. If the number is 0,
/// does nothing (returns None). Truncates an int to 0.
fn _inv<T>(vals: Vec<T>) -> Option<T>
fn _inv<T>(a: T) -> Option<T>
where
T: Copy + NumericTrait,
T: NumericTrait,
{
vals[0].inverse()
a.inverse()
}
make_instruction!(int, int, _inv, i128, 1);
make_instruction!(float, float, _inv, Decimal, 1);
/// Takes the absolute value of the top number
fn _abs<T>(vals: Vec<T>) -> Option<T>
fn _abs<T>(a: T) -> Option<T>
where
T: Copy + NumericTrait,
T: NumericTrait,
{
Some(vals[0].absolute())
Some(a.absolute())
}
make_instruction!(int, int, _abs, i128, 1);
make_instruction!(float, float, _abs, Decimal, 1);
/// Reverses the sign of the top number
fn _sign_reverse<T>(vals: Vec<T>) -> Option<T>
fn _sign_reverse<T>(a: T) -> Option<T>
where
T: Copy + NumericTrait,
T: NumericTrait,
{
Some(vals[0].sign_reverse())
Some(a.sign_reverse())
}
make_instruction!(int, int, _sign_reverse, i128, 1);
make_instruction!(float, float, _sign_reverse, Decimal, 1);
/// Squares the top number
fn _square<T>(vals: Vec<T>) -> Option<T>
fn _square<T>(a: T) -> Option<T>
where
T: Copy + NumericTrait,
T: NumericTrait,
{
Some(vals[0].square())
Some(a.square())
}
make_instruction!(int, int, _square, i128, 1);
make_instruction!(float, float, _square, Decimal, 1);
macro_rules! make_instructions {
macro_rules! make_numeric_instructions {
($stack:ident) => {
paste::item! {
make_instruction_new!(_add, $stack, $stack, $stack, $stack);
}
make_instruction_new!(_add, $stack, $stack, $stack, $stack);
make_instruction_new!(_sub, $stack, $stack, $stack, $stack);
make_instruction_new!(_mult, $stack, $stack, $stack, $stack);
make_instruction_new!(_div, $stack, $stack, $stack, $stack);
make_instruction_new!(_rem, $stack, $stack, $stack, $stack);
make_instruction_new!(_max, $stack, $stack, $stack, $stack);
make_instruction_new!(_min, $stack, $stack, $stack, $stack);
make_instruction_new!(_inc, $stack, $stack, $stack);
make_instruction_new!(_dec, $stack, $stack, $stack);
make_instruction_new!(_lt, $stack, boolean, $stack, $stack);
make_instruction_new!(_gt, $stack, boolean, $stack, $stack);
make_instruction_new!(_lte, $stack, boolean, $stack, $stack);
make_instruction_new!(_gte, $stack, boolean, $stack, $stack);
make_instruction_new!(_sin, $stack, $stack, $stack);
make_instruction_new!(_arcsin, $stack, $stack, $stack);
make_instruction_new!(_cos, $stack, $stack, $stack);
make_instruction_new!(_arccos, $stack, $stack, $stack);
make_instruction_new!(_tan, $stack, $stack, $stack);
make_instruction_new!(_arctan, $stack, $stack, $stack);
make_instruction_new!(_from_boolean, $stack, $stack, boolean);
make_instruction_new!(_log, $stack, $stack, $stack);
make_instruction_new!(_exp, $stack, $stack, $stack);
make_instruction_new!(_sqrt, $stack, $stack, $stack);
make_instruction_new!(_inv, $stack, $stack, $stack);
make_instruction_new!(_abs, $stack, $stack, $stack);
make_instruction_new!(_sign_reverse, $stack, $stack, $stack);
make_instruction_new!(_square, $stack, $stack, $stack);
};
}
make_instructions!(int);
make_instructions!(float);
macro_rules! all_numeric_instructions {
() => {
make_numeric_instructions!(int);
make_numeric_instructions!(float);
make_instruction_new!(_from_int, float, float, int);
make_instruction_new!(_from_float, int, int, float);
};
}
all_numeric_instructions!();
#[cfg(test)]
mod tests {
@ -328,160 +305,93 @@ mod tests {
/// Tests the _sub function.
#[test]
fn sub_test() {
let vals: Vec<i64> = vec![1, 2];
assert_eq!(Some(1), _sub(vals));
let vals: Vec<Decimal> = vec![dec!(1.1), dec!(2.2)];
assert_eq!(Some(dec!(1.1)), _sub(vals));
assert_eq!(Some(1), _sub(1, 2));
assert_eq!(Some(dec!(1.1)), _sub(dec!(1.1), dec!(2.2)));
}
/// Tests the _mult function.
#[test]
fn mult_test() {
let vals: Vec<i128> = vec![4, 5];
assert_eq!(Some(20), _mult(vals));
let vals: Vec<Decimal> = vec![dec!(1.1), dec!(2.2)];
assert_eq!(Some(dec!(2.42)), _mult(vals));
assert_eq!(Some(20), _mult(5, 4));
assert_eq!(Some(dec!(2.42)), _mult(dec!(2.2), dec!(1.1)));
}
/// Tests the _div function
#[test]
fn div_test() {
let vals: Vec<i128> = vec![4, 20];
assert_eq!(Some(5), _div(vals));
let vals: Vec<i128> = vec![3, 20];
assert_eq!(Some(6), _div(vals));
let vals: Vec<Decimal> = vec![dec!(1.6), dec!(2.2)];
assert_eq!(Some(dec!(1.375)), _div(vals));
let vals: Vec<i128> = vec![0, 1];
assert_eq!(None, _div(vals));
assert_eq!(Some(5), _div(4, 20));
assert_eq!(Some(6), _div(3, 20));
assert_eq!(Some(dec!(1.375)), _div(dec!(1.6), dec!(2.2)));
assert_eq!(None, _div(0, 1));
}
/// Tests the _rem function
#[test]
fn rem_test() {
let vals: Vec<i128> = vec![3, 20];
assert_eq!(Some(2), _rem(vals));
let vals: Vec<i128> = vec![20, 20];
assert_eq!(Some(0), _rem(vals));
let vals: Vec<i128> = vec![0, 9];
assert_eq!(None, _rem(vals));
assert_eq!(Some(2), _rem(3, 20));
assert_eq!(Some(0), _rem(20, 20));
assert_eq!(None, _rem(0, 9));
}
/// Tests the _max function
#[test]
fn max_test() {
let vals: Vec<i128> = vec![1, 2];
assert_eq!(Some(2), _max(vals));
let vals: Vec<i128> = vec![3, 0];
assert_eq!(Some(3), _max(vals));
let vals: Vec<Decimal> = vec![dec!(2.2), dec!(1.1)];
assert_eq!(Some(dec!(2.2)), _max(vals));
let vals: Vec<Decimal> = vec![dec!(3.3), dec!(-1.1)];
assert_eq!(Some(dec!(3.3)), _max(vals));
assert_eq!(Some(2), _max(1, 2));
assert_eq!(Some(3), _max(3, 0));
assert_eq!(Some(dec!(2.2)), _max(dec!(2.2), dec!(1.1)));
assert_eq!(Some(dec!(3.3)), _max(dec!(3.3), dec!(-1.1)));
}
/// Tests the _min function
#[test]
fn min_test() {
let vals: Vec<i128> = vec![1, 2];
assert_eq!(Some(1), _min(vals));
let vals: Vec<i128> = vec![3, 0];
assert_eq!(Some(0), _min(vals));
let vals: Vec<Decimal> = vec![dec!(2.2), dec!(1.1)];
assert_eq!(Some(dec!(1.1)), _min(vals));
let vals: Vec<Decimal> = vec![dec!(3.3), dec!(-1.1)];
assert_eq!(Some(dec!(-1.1)), _min(vals));
assert_eq!(Some(1), _min(1, 2));
assert_eq!(Some(0), _min(3, 0));
assert_eq!(Some(dec!(1.1)), _min(dec!(2.2), dec!(1.1)));
assert_eq!(Some(dec!(-1.1)), _min(dec!(3.3), dec!(-1.1)));
}
/// Tests the _inc and _dec functions
#[test]
fn inc_dec_test() {
let vals: Vec<i128> = vec![2];
assert_eq!(Some(3), _inc(vals));
let vals: Vec<i128> = vec![10];
assert_eq!(Some(9), _dec(vals));
let vals: Vec<Decimal> = vec![dec!(2.2)];
assert_eq!(Some(dec!(3.2)), _inc(vals));
let vals: Vec<Decimal> = vec![dec!(5.6)];
assert_eq!(Some(dec!(4.6)), _dec(vals));
assert_eq!(Some(3), _inc(2));
assert_eq!(Some(9), _dec(10));
assert_eq!(Some(dec!(3.2)), _inc(dec!(2.2)));
assert_eq!(Some(dec!(4.6)), _dec(dec!(5.6)));
}
/// Tests the _lt, _gt, _lte, and _gte functions
#[test]
fn lt_gt_lte_gte_test() {
let vals: Vec<i128> = vec![3, 2];
assert_eq!(Some(true), _lt(vals));
let vals: Vec<i128> = vec![1, 4];
assert_eq!(Some(false), _lt(vals));
let vals: Vec<i128> = vec![3, 3];
assert_eq!(Some(false), _lt(vals));
let vals: Vec<i128> = vec![2, 3];
assert_eq!(Some(true), _gt(vals));
let vals: Vec<i128> = vec![4, 1];
assert_eq!(Some(false), _gt(vals));
let vals: Vec<i128> = vec![3, 3];
assert_eq!(Some(false), _gt(vals));
let vals: Vec<i128> = vec![3, 2];
assert_eq!(Some(true), _lte(vals));
let vals: Vec<i128> = vec![1, 4];
assert_eq!(Some(false), _lte(vals));
let vals: Vec<i128> = vec![3, 3];
assert_eq!(Some(true), _lte(vals));
let vals: Vec<i128> = vec![2, 3];
assert_eq!(Some(true), _gte(vals));
let vals: Vec<i128> = vec![4, 1];
assert_eq!(Some(false), _gte(vals));
let vals: Vec<i128> = vec![3, 3];
assert_eq!(Some(true), _gte(vals));
assert_eq!(Some(true), _lt(3, 2));
assert_eq!(Some(false), _lt(1, 4));
assert_eq!(Some(false), _lt(3, 3));
assert_eq!(Some(true), _gt(2, 3));
assert_eq!(Some(false), _gt(4, 1));
assert_eq!(Some(false), _gt(3, 3));
assert_eq!(Some(true), _lte(3, 2));
assert_eq!(Some(false), _lte(1, 4));
assert_eq!(Some(true), _lte(3, 3));
assert_eq!(Some(true), _gte(2, 3));
assert_eq!(Some(false), _gte(4, 1));
assert_eq!(Some(true), _gte(3, 3));
}
/// Tests the various trig functions.
#[test]
fn trig_tests() {
let vals = vec![Decimal::PI];
assert_eq!(Some(dec!(0.0)), _sin(vals));
let vals = vec![Decimal::QUARTER_PI];
assert_eq!(Some(dec!(1.4142135623869512272301701717)), _arcsin(vals));
let vals = vec![Decimal::PI];
assert_eq!(Some(dec!(-1.0)), _cos(vals));
let vals = vec![Decimal::QUARTER_PI];
assert_eq!(Some(dec!(1.4142135626023406165042434783)), _arccos(vals));
let vals = vec![Decimal::PI];
assert_eq!(Some(dec!(0.0)), _tan(vals));
let vals = vec![Decimal::QUARTER_PI];
assert_eq!(Some(dec!(1.0000000043184676055890307049)), _arctan(vals));
assert_eq!(Some(dec!(0.0)), _sin(Decimal::PI));
assert_eq!(
Some(dec!(1.4142135623869512272301701717)),
_arcsin(Decimal::QUARTER_PI)
);
assert_eq!(Some(dec!(-1.0)), _cos(Decimal::PI));
assert_eq!(Some(dec!(-1.0)), _arccos(Decimal::PI));
assert_eq!(Some(dec!(0.0)), _tan(Decimal::PI));
assert_eq!(
Some(dec!(1.0000000043184676055890307049)),
_arctan(Decimal::QUARTER_PI)
);
}
/// Tests that the various addition functions.
@ -545,7 +455,6 @@ mod tests {
assert_eq!(vec![2, 0], test_state.int);
test_state.int = vec![6, 3];
int_div(&mut test_state);
assert_eq!(vec![2], test_state.int);
@ -731,6 +640,13 @@ mod tests {
test_state.float = vec![dec!(2.1)];
int_from_float(&mut test_state);
assert_eq!(vec![2], test_state.int);
test_state.float.clear();
test_state.int.clear();
test_state.boolean = vec![true];
int_from_boolean(&mut test_state);
assert_eq!(vec![1], test_state.int);
test_state.boolean.clear();
}
/// Tests the log function

View File

@ -9,6 +9,10 @@ fn aux_iadd(x: i128, y: i128) -> Option<Vec<i128>> {
Some(vec![x + y, x - y])
}
fn two_stacks(x: i128, y: i128, cond: bool) -> Option<i128> {
if cond { Some(x + y) } else { Some(x - y) }
}
#[test]
fn run_extract_test() {
let mut test_state = EMPTY_STATE;
@ -26,4 +30,8 @@ fn run_extract_test() {
test_state.int = vec![1, 2];
run_instruction!(aux_iadd, int, test_state, int, int;);
assert_eq!(vec![3, 1], test_state.int);
test_state.int = vec![1, 2];
test_state.boolean = vec![true];
run_instruction!(two_stacks, int, test_state, int, int, boolean);
}