need to redesign, can't just start programming

This commit is contained in:
Rowan Torbitzky-Lane 2025-04-09 11:17:35 -05:00
parent e0414009ff
commit 528aeb1c9b
11 changed files with 0 additions and 2087 deletions

View File

@ -1,353 +0,0 @@
use std::ops::Not;
use crate::push::state::{Gene, PushState};
/// Checks to see if a single gene is a block.
fn _is_block(vals: Vec<Gene>) -> Option<bool> {
Some(match vals[0] {
Gene::Block(_) => true,
_ => false,
})
}
make_instruction_clone!(code, boolean, _is_block, Gene, 1);
/// Checks to see if a single gene is not a block.
fn _is_singular(vals: Vec<Gene>) -> Option<bool> {
Some(_is_block(vals)?.not())
}
make_instruction_clone!(code, boolean, _is_singular, Gene, 1);
/// Returns the length of a block, else 1 if not a block
fn _length(vals: Vec<Gene>) -> Option<i128> {
Some(match &vals[0] {
Gene::Block(x) => x.len() as i128,
_ => 1,
})
}
make_instruction_clone!(code, int, _length, Gene, 1);
/// Returns the first item in a block if doable, else None
fn _first(vals: Vec<Gene>) -> Option<Gene> {
match &vals[0] {
Gene::Block(x) => {
if x.len() > 1 {
Some(x[0].clone())
} else {
None
}
}
_ => None,
}
}
make_instruction_clone!(code, code, _first, Gene, 1);
/// Returns the first item in a block if applicable, else None
fn _last(vals: Vec<Gene>) -> Option<Gene> {
match &vals[0] {
Gene::Block(x) => {
if x.len() > 1 {
Some(x.last()?.clone())
} else {
None
}
}
_ => None,
}
}
make_instruction_clone!(code, code, _last, Gene, 1);
/// Returns all but the first code item in a block if applicable, else None
fn _rest(vals: Vec<Gene>) -> Option<Gene> {
match &vals[0] {
Gene::Block(x) => {
if x.len() > 1 {
Some(Gene::Block(Box::new(x[1..].to_vec())))
} else {
None
}
}
_ => None,
}
}
make_instruction_clone!(code, code, _rest, Gene, 1);
/// Returns all but the first code item in a block if applicable, else None
fn _but_last(vals: Vec<Gene>) -> Option<Gene> {
match &vals[0] {
Gene::Block(x) => {
let x_len = x.len();
if x_len > 1 {
Some(Gene::Block(Box::new(x[..x_len - 1].to_vec())))
} else {
None
}
}
_ => None,
}
}
make_instruction_clone!(code, code, _but_last, Gene, 1);
/// Returns all of the vals wrapped in a code block
fn _wrap_block(vals: Vec<Gene>) -> Option<Gene> {
Some(Gene::Block(Box::new(vals)))
}
make_instruction_clone!(code, code, _wrap_block, Gene, 1);
/// Combines two genes into one. Accounts for blocks.
/// If the second gene is a block and the first one isn't,
/// appends the first gene to the second gene.
fn _combine(vals: Vec<Gene>) -> Option<Gene> {
match (&vals[0], &vals[1]) {
(Gene::Block(x), Gene::Block(y)) => {
let x_clone = x.clone();
let mut y_clone = y.clone();
y_clone.extend(x_clone.into_iter());
Some(Gene::Block(y_clone))
}
(Gene::Block(x), y) => {
let mut x_clone = x.clone();
x_clone.push(y.clone());
Some(Gene::Block(x_clone))
}
(x, Gene::Block(y)) => {
let mut y_clone = y.clone();
y_clone.push(x.clone());
Some(Gene::Block(y_clone))
}
(x, y) => Some(Gene::Block(Box::new(vec![x.clone(), y.clone()]))),
}
}
make_instruction_clone!(code, code, _combine, Gene, 2);
#[cfg(test)]
mod tests {
use super::*;
use crate::push::state::EMPTY_STATE;
use rust_decimal::dec;
#[test]
fn is_block_test() {
let mut test_state = EMPTY_STATE;
test_state.code = vec![Gene::Block(Box::new(vec![]))];
code_is_block(&mut test_state);
assert_eq!(vec![true], test_state.boolean);
test_state.boolean.clear();
test_state.code = vec![(Gene::GeneInt(1))];
code_is_block(&mut test_state);
assert_eq!(vec![false], test_state.boolean);
}
#[test]
fn is_singular_test() {
let mut test_state = EMPTY_STATE;
test_state.code = vec![Gene::Block(Box::new(vec![]))];
code_is_singular(&mut test_state);
assert_eq!(vec![false], test_state.boolean);
test_state.boolean.clear();
test_state.code = vec![(Gene::GeneInt(1))];
code_is_singular(&mut test_state);
assert_eq!(vec![true], test_state.boolean);
}
#[test]
fn length_test() {
let mut test_state = EMPTY_STATE;
test_state.code = vec![Gene::Block(Box::new(vec![
Gene::GeneInt(1),
Gene::GeneFloat(dec!(3.8)),
]))];
code_length(&mut test_state);
assert_eq!(vec![2], test_state.int);
test_state.int.clear();
test_state.code = vec![Gene::Block(Box::new(vec![]))];
code_length(&mut test_state);
assert_eq!(vec![0], test_state.int);
test_state.int.clear();
test_state.code = vec![Gene::GeneInt(3)];
code_length(&mut test_state);
assert_eq!(vec![1], test_state.int);
}
#[test]
fn first_test() {
let mut test_state = EMPTY_STATE;
test_state.code = vec![Gene::Block(Box::new(vec![
Gene::GeneInt(1),
Gene::GeneFloat(dec!(3.8)),
]))];
code_first(&mut test_state);
assert_eq!(vec![Gene::GeneInt(1)], test_state.code);
test_state.code = vec![];
code_first(&mut test_state);
let empty_vec: Vec<Gene> = vec![];
assert_eq!(empty_vec, test_state.code);
drop(empty_vec);
test_state.code = vec![Gene::GeneInt(1)];
code_first(&mut test_state);
assert_eq!(vec![Gene::GeneInt(1)], test_state.code);
}
#[test]
fn last_test() {
let mut test_state = EMPTY_STATE;
test_state.code = vec![Gene::Block(Box::new(vec![
Gene::GeneInt(1),
Gene::GeneFloat(dec!(3.8)),
]))];
code_last(&mut test_state);
assert_eq!(vec![Gene::GeneFloat(dec!(3.8))], test_state.code);
test_state.code = vec![];
code_last(&mut test_state);
let empty_vec: Vec<Gene> = vec![];
assert_eq!(empty_vec, test_state.code);
drop(empty_vec);
test_state.code = vec![Gene::GeneInt(1)];
code_last(&mut test_state);
assert_eq!(vec![Gene::GeneInt(1)], test_state.code);
}
#[test]
fn rest_test() {
let mut test_state = EMPTY_STATE;
test_state.code = vec![Gene::Block(Box::new(vec![
Gene::GeneInt(1),
Gene::GeneFloat(dec!(3.8)),
Gene::GeneBoolean(true),
]))];
code_rest(&mut test_state);
assert_eq!(
vec![Gene::Block(Box::new(vec![
Gene::GeneFloat(dec!(3.8)),
Gene::GeneBoolean(true)
]))],
test_state.code
);
test_state.code = vec![];
code_rest(&mut test_state);
let empty_vec: Vec<Gene> = vec![];
assert_eq!(empty_vec, test_state.code);
drop(empty_vec);
test_state.code = vec![Gene::GeneInt(1)];
code_rest(&mut test_state);
assert_eq!(vec![Gene::GeneInt(1)], test_state.code);
}
#[test]
fn but_last_test() {
let mut test_state = EMPTY_STATE;
test_state.code = vec![Gene::Block(Box::new(vec![
Gene::GeneInt(1),
Gene::GeneFloat(dec!(3.8)),
Gene::GeneBoolean(true),
]))];
code_but_last(&mut test_state);
assert_eq!(
vec![Gene::Block(Box::new(vec![
Gene::GeneInt(1),
Gene::GeneFloat(dec!(3.8)),
]))],
test_state.code
);
test_state.code = vec![];
code_but_last(&mut test_state);
let empty_vec: Vec<Gene> = vec![];
assert_eq!(empty_vec, test_state.code);
drop(empty_vec);
test_state.code = vec![Gene::GeneInt(1)];
code_but_last(&mut test_state);
assert_eq!(vec![Gene::GeneInt(1)], test_state.code);
}
#[test]
fn wrap_block_test() {
let mut test_state = EMPTY_STATE;
test_state.code = vec![Gene::GeneInt(1)];
code_wrap_block(&mut test_state);
assert_eq!(
vec![Gene::Block(Box::new(vec![Gene::GeneInt(1)]))],
test_state.code
);
}
#[test]
fn combine_test() {
let mut test_state = EMPTY_STATE;
test_state
.code
.push(Gene::Block(Box::new(vec![Gene::GeneInt(1)])));
test_state.code.push(Gene::Block(Box::new(vec![
Gene::GeneFloat(dec!(3.8)),
Gene::GeneBoolean(true),
])));
code_combine(&mut test_state);
assert_eq!(
vec![Gene::Block(Box::new(vec![
Gene::GeneInt(1),
Gene::GeneFloat(dec!(3.8)),
Gene::GeneBoolean(true),
]))],
test_state.code
);
test_state.code.clear();
test_state
.code
.push(Gene::Block(Box::new(vec![Gene::GeneInt(1)])));
test_state.code.push(Gene::GeneFloat(dec!(4.0)));
code_combine(&mut test_state);
assert_eq!(
vec![Gene::Block(Box::new(vec![
Gene::GeneInt(1),
Gene::GeneFloat(dec!(4.0)),
]))],
test_state.code
);
test_state.code.clear();
test_state.code.push(Gene::GeneFloat(dec!(4.0)));
test_state
.code
.push(Gene::Block(Box::new(vec![Gene::GeneInt(1)])));
code_combine(&mut test_state);
assert_eq!(
vec![Gene::Block(Box::new(vec![
Gene::GeneInt(1),
Gene::GeneFloat(dec!(4.0)),
]))],
test_state.code
);
test_state.code.clear();
test_state.code.push(Gene::GeneFloat(dec!(4.0)));
test_state.code.push(Gene::GeneChar('z'));
code_combine(&mut test_state);
assert_eq!(
vec![Gene::Block(Box::new(vec![
Gene::GeneChar('z'),
Gene::GeneFloat(dec!(4.0)),
]))],
test_state.code
);
}
}

View File

@ -1,29 +0,0 @@
use crate::push::state::{Gene, PushState};
/// Acts as a NoOp, does nothing with the vals list.
fn _noop<T>(_: Vec<T>) -> Option<T> {
None
}
make_instruction_clone!(code, code, _noop, Gene, 0);
make_instruction_clone!(exec, exec, _noop, Gene, 0);
#[cfg(test)]
mod tests {
use super::*;
use crate::push::state::EMPTY_STATE;
#[test]
fn noop_test() {
let mut test_state = EMPTY_STATE;
test_state.int = vec![1, 2];
let test_state_copy = test_state.clone();
code_noop(&mut test_state);
assert_eq!(test_state, test_state_copy);
test_state.int = vec![1, 2];
let test_state_copy = test_state.clone();
exec_noop(&mut test_state);
assert_eq!(test_state, test_state_copy);
}
}

View File

@ -1,198 +0,0 @@
//! # Logical Instructions
//!
//! This file holds instructions for the boolean stack.
use super::utils::{CastingTrait, LogicalTrait};
use crate::push::state::PushState;
use rust_decimal::Decimal;
/// Runs logical and on two values
fn _and<T>(vals: Vec<T>) -> Option<T>
where
T: Copy + LogicalTrait,
{
Some(vals[0].logical_and(vals[1]))
}
make_instruction!(boolean, boolean, _and, bool, 2);
/// Runs logical or on two values
fn _or<T>(vals: Vec<T>) -> Option<T>
where
T: Copy + LogicalTrait,
{
Some(vals[0].logical_or(vals[1]))
}
make_instruction!(boolean, boolean, _or, bool, 2);
/// Runs logical not on two values
fn _not<T>(vals: Vec<T>) -> Option<T>
where
T: Copy + LogicalTrait,
{
Some(vals[0].logical_not())
}
make_instruction!(boolean, boolean, _not, bool, 1);
/// Runs logical xor on two values
fn _xor<T>(vals: Vec<T>) -> Option<T>
where
T: Copy + LogicalTrait,
{
Some(vals[0].logical_xor(vals[1]))
}
make_instruction!(boolean, boolean, _xor, bool, 2);
/// Inverts the first value and runs logical and on two values
fn _invert_first_then_and<T>(vals: Vec<T>) -> Option<T>
where
T: Copy + LogicalTrait,
{
Some(vals[0].logical_not().logical_and(vals[1]))
}
make_instruction!(boolean, boolean, _invert_first_then_and, bool, 2);
/// Inverts the second value and runs logical and on two values
fn _invert_second_then_and<T>(vals: Vec<T>) -> Option<T>
where
T: Copy + LogicalTrait,
{
Some(vals[0].logical_and(vals[1].logical_not()))
}
make_instruction!(boolean, boolean, _invert_second_then_and, bool, 2);
fn _from_int<T>(vals: Vec<i128>) -> Option<T>
where
T: Copy + CastingTrait,
{
T::from_int(vals[0])
}
make_instruction_out!(int, boolean, _from_int, i128, 1);
fn _from_float<T>(vals: Vec<Decimal>) -> Option<T>
where
T: Copy + CastingTrait,
{
T::from_float(vals[0])
}
make_instruction_out!(float, boolean, _from_float, Decimal, 1);
pub fn boolean_instructions() -> Vec<fn(&mut PushState)> {
vec![
boolean_and,
boolean_or,
boolean_not,
boolean_xor,
boolean_invert_first_then_and,
boolean_invert_second_then_and,
boolean_from_int,
boolean_from_float,
]
}
#[cfg(test)]
mod tests {
use super::*;
use crate::push::state::EMPTY_STATE;
use rust_decimal::dec;
#[test]
fn and_test() {
let mut test_state = EMPTY_STATE;
test_state.boolean = vec![true, false, true];
boolean_and(&mut test_state);
assert_eq!(vec![true, false], test_state.boolean);
test_state.boolean = vec![true, true];
boolean_and(&mut test_state);
assert_eq!(vec![true], test_state.boolean);
}
#[test]
fn or_test() {
let mut test_state = EMPTY_STATE;
test_state.boolean = vec![true, false, true];
boolean_or(&mut test_state);
assert_eq!(vec![true, true], test_state.boolean);
test_state.boolean = vec![false, false];
boolean_or(&mut test_state);
assert_eq!(vec![false], test_state.boolean);
}
#[test]
fn not_test() {
let mut test_state = EMPTY_STATE;
test_state.boolean = vec![true, false, true];
boolean_not(&mut test_state);
assert_eq!(vec![true, false, false], test_state.boolean);
test_state.boolean = vec![false, false];
boolean_not(&mut test_state);
assert_eq!(vec![false, true], test_state.boolean);
}
#[test]
fn xor_test() {
let mut test_state = EMPTY_STATE;
test_state.boolean = vec![true, false, true];
boolean_xor(&mut test_state);
assert_eq!(vec![true, true], test_state.boolean);
test_state.boolean = vec![false, false];
boolean_xor(&mut test_state);
assert_eq!(vec![false], test_state.boolean);
test_state.boolean = vec![true, true];
boolean_xor(&mut test_state);
assert_eq!(vec![false], test_state.boolean);
}
#[test]
fn invert_test() {
let mut test_state = EMPTY_STATE;
test_state.boolean = vec![true, false];
boolean_invert_first_then_and(&mut test_state);
assert_eq!(vec![true], test_state.boolean);
test_state.boolean = vec![false, false];
boolean_invert_first_then_and(&mut test_state);
assert_eq!(vec![false], test_state.boolean);
test_state.boolean = vec![true, false];
boolean_invert_second_then_and(&mut test_state);
assert_eq!(vec![false], test_state.boolean);
test_state.boolean = vec![false, true];
boolean_invert_second_then_and(&mut test_state);
assert_eq!(vec![true], test_state.boolean);
}
#[test]
fn cast_test() {
let mut test_state = EMPTY_STATE;
test_state.int = vec![1];
boolean_from_int(&mut test_state);
assert_eq!(vec![true], test_state.boolean);
test_state.boolean.clear();
test_state.int = vec![0];
boolean_from_int(&mut test_state);
assert_eq!(vec![false], test_state.boolean);
test_state.boolean.clear();
test_state.float = vec![dec!(2.0)];
boolean_from_float(&mut test_state);
assert_eq!(vec![true], test_state.boolean);
test_state.boolean.clear();
test_state.float = vec![dec!(0.0)];
boolean_from_float(&mut test_state);
assert_eq!(vec![false], test_state.boolean);
}
}

View File

@ -1,135 +0,0 @@
#[macro_use]
pub mod macros {
/// A macro that makes a push instruction given: the name of the input stack to use,
/// the name of the output stack, an internal function to call, the type of a function,
/// and the arity of the internal function call.
///
/// The `in_stack` argument refers to which push stack should this operate on.
/// The `out_stack` argument refers to which push stack should the result be pushed to.
/// The `fn_name` argement refers to the name of the function that is to operate
/// on the values popped from `in_stack`.
/// The `fn_type` argument refers to the type of `in_stack`. For example, the
/// int stack is type: *Vec<i128>*. `fn_type` is *i128* in this case.
/// The `fn_arity` argument refers to how many popped stack items are needed to
/// execute the instruction. If the amount of items in the stack is less than
/// this value, the instruction does nothing.
///
/// What causes an instruction to NoOp:
/// 1) There aren't enough values on a stack to execute an instruction.
/// 2) The internal operation the instruction executes is unable to be ran without
/// erroring such as division by 0.
#[macro_export]
macro_rules! make_instruction {
($in_stack:ident, $out_stack:ident, $fn_name:ident, $fn_type:ty, $fn_arity:stmt) => {
paste::item! {
/// Runs the $fn_name function on the top $fn_arity items from
/// the $in_stack and places the calculated value on the $out_stack.
pub fn [< $in_stack $fn_name >] (state: &mut PushState) {
let in_stack_len = state.$in_stack.len();
if in_stack_len < $fn_arity {
return;
}
let mut inputs: Vec<$fn_type> = Vec::with_capacity($fn_arity);
for n in 1..=$fn_arity {
inputs.push(state.$in_stack[in_stack_len - n]);
}
if let Some(result) = $fn_name(inputs) {
for _ in 0..$fn_arity {
state.$in_stack.pop();
}
state.$out_stack.push(result);
}
}
}
};
}
/// The same as make_instruction above but prepends the output
/// stack to the function name rather than the input stack.
#[macro_export]
macro_rules! make_instruction_out {
($in_stack:ident, $out_stack:ident, $fn_name:ident, $fn_type:ty, $fn_arity:stmt) => {
paste::item! {
/// Runs the $fn_name function on the top $fn_arity items from
/// the $in_stack and places the calculated value on the $out_stack.
pub fn [< $out_stack $fn_name >] (state: &mut PushState) {
let in_stack_len = state.$in_stack.len();
if in_stack_len < $fn_arity {
return;
}
let mut inputs: Vec<$fn_type> = Vec::with_capacity($fn_arity);
for n in 1..=$fn_arity {
inputs.push(state.$in_stack[in_stack_len - n]);
}
if let Some(result) = $fn_name(inputs) {
for _ in 0..$fn_arity {
state.$in_stack.pop();
}
state.$out_stack.push(result);
}
}
}
};
}
/// The same as make_instruction but uses clone() to fill the arguments
/// to each function rather than a reference. Is slower, but will be okay
/// for the time being.
#[macro_export]
macro_rules! make_instruction_clone {
($in_stack:ident, $out_stack:ident, $fn_name:ident, $fn_type:ty, $fn_arity:stmt) => {
paste::item! {
/// Runs the $fn_name function on the top $fn_arity items from
/// the $in_stack and places the calculated value on the $out_stack.
pub fn [< $in_stack $fn_name >] (state: &mut PushState) {
let in_stack_len = state.$in_stack.len();
if in_stack_len < $fn_arity {
return;
}
let mut inputs: Vec<$fn_type> = Vec::with_capacity($fn_arity);
for n in 1..=$fn_arity {
inputs.push(state.$in_stack[in_stack_len - n].clone());
}
if let Some(result) = $fn_name(inputs) {
for _ in 0..$fn_arity {
state.$in_stack.pop();
}
state.$out_stack.push(result);
}
}
}
};
}
#[macro_export]
macro_rules! make_instruction_mult {
($in_stack:ident, $out_stack:ident, $fn_name:ident, $fn_type:ty, $fn_arity:stmt) => {
paste::item! {
/// Runs the $fn_name function on the top $fn_arity items from
/// the $in_stack and places the calculated value on the $out_stack.
pub fn [< $in_stack $fn_name >] (state: &mut PushState) {
let in_stack_len = state.$in_stack.len();
if in_stack_len < $fn_arity {
return;
}
let mut inputs: Vec<$fn_type> = Vec::with_capacity($fn_arity);
for n in 1..=$fn_arity {
inputs.push(state.$in_stack[in_stack_len - n]);
}
if let Some(result) = $fn_name(inputs) {
for _ in 0..$fn_arity {
state.$in_stack.pop();
}
state.$out_stack.extend(result.iter());
}
}
}
};
}
}
pub mod code;
pub mod common;
pub mod logical;
pub mod numeric;
pub mod utils;

View File

@ -1,936 +0,0 @@
//! # Numeric Instructions
//!
//! This file contains numeric instructions for int and float.
// There has to be a better way to declare these functions.
// Just don't know enough Rust yet ig.
use crate::push::state::PushState;
use rust_decimal::Decimal;
use rust_decimal::prelude::{FromPrimitive, ToPrimitive};
use std::cmp::{max, min};
use std::ops::{Add, Div, Mul, Sub};
use super::utils::{CastingTrait, NumericTrait};
/// Adds two addable values together.
fn _add<T>(vals: Vec<T>) -> Option<T>
where
T: Add<Output = T> + Copy,
{
Some(vals[1] + vals[0])
}
make_instruction!(int, int, _add, i128, 2);
make_instruction!(float, float, _add, Decimal, 2);
/// Subtracts two subtractable values from each other.
fn _sub<T>(vals: Vec<T>) -> Option<T>
where
T: Sub<Output = T> + Copy,
{
Some(vals[1] - vals[0])
}
make_instruction!(int, int, _sub, i128, 2);
make_instruction!(float, float, _sub, Decimal, 2);
/// Multiplies two multipliable values together.
fn _mult<T>(vals: Vec<T>) -> Option<T>
where
T: Mul<Output = T> + Copy,
{
Some(vals[1] * vals[0])
}
make_instruction!(int, int, _mult, i128, 2);
make_instruction!(float, float, _mult, Decimal, 2);
/// Divides two values from each other.
fn _div<T>(vals: Vec<T>) -> Option<T>
where
T: Div<Output = T> + Copy + NumericTrait,
{
vals[1].checked_div(vals[0])
}
make_instruction!(int, int, _div, i128, 2);
make_instruction!(float, float, _div, Decimal, 2);
/// Takes the remainder of two values
fn _rem<T>(vals: Vec<T>) -> Option<T>
where
T: Div<Output = T> + Copy + NumericTrait,
{
vals[1].checked_mod(vals[0])
}
make_instruction!(int, int, _rem, i128, 2);
make_instruction!(float, float, _rem, Decimal, 2);
/// Takes the max of two values
fn _max<T>(vals: Vec<T>) -> Option<T>
where
T: Ord + Copy,
{
Some(max(vals[1], vals[0]))
}
make_instruction!(int, int, _max, i128, 2);
make_instruction!(float, float, _max, Decimal, 2);
/// Takes the min of two values
fn _min<T>(vals: Vec<T>) -> Option<T>
where
T: Ord + Copy,
{
Some(min(vals[1], vals[0]))
}
make_instruction!(int, int, _min, i128, 2);
make_instruction!(float, float, _min, Decimal, 2);
/// Increments a single value by 1
fn _inc<T>(vals: Vec<T>) -> Option<T>
where
T: NumericTrait + Copy,
{
Some(vals[0].increment())
}
make_instruction!(int, int, _inc, i128, 1);
make_instruction!(float, float, _inc, Decimal, 1);
/// Decrements a single value by 1
fn _dec<T>(vals: Vec<T>) -> Option<T>
where
T: NumericTrait + Copy,
{
Some(vals[0].decrement())
}
make_instruction!(int, int, _dec, i128, 1);
make_instruction!(float, float, _dec, Decimal, 1);
/// Checks if the 2nd to top value is less than the top value
fn _lt<T>(vals: Vec<T>) -> Option<bool>
where
T: Ord + Copy,
{
Some(vals[1] < vals[0])
}
make_instruction!(int, boolean, _lt, i128, 2);
make_instruction!(float, boolean, _lt, Decimal, 2);
/// Checks if the 2nd to top value is greater than the top value
fn _gt<T>(vals: Vec<T>) -> Option<bool>
where
T: Ord + Copy,
{
Some(vals[1] > vals[0])
}
make_instruction!(int, boolean, _gt, i128, 2);
make_instruction!(float, boolean, _gt, Decimal, 2);
/// Checks if the 2nd to top value is less than or equal to the top value
fn _lte<T>(vals: Vec<T>) -> Option<bool>
where
T: Ord + Copy,
{
Some(vals[1] <= vals[0])
}
make_instruction!(int, boolean, _lte, i128, 2);
make_instruction!(float, boolean, _lte, Decimal, 2);
/// Checks if the 2nd to top value is greater than or equal to the top value
fn _gte<T>(vals: Vec<T>) -> Option<bool>
where
T: Ord + Copy,
{
Some(vals[1] >= vals[0])
}
make_instruction!(int, boolean, _gte, i128, 2);
make_instruction!(float, boolean, _gte, Decimal, 2);
/// Runs sin on a single item.
fn _sin<T>(vals: Vec<T>) -> Option<T>
where
T: Copy + NumericTrait,
{
vals[0].safe_sin()
}
make_instruction!(int, int, _sin, i128, 1);
make_instruction!(float, float, _sin, Decimal, 1);
/// Runs arcsin on a single item.
fn _arcsin<T>(vals: Vec<T>) -> Option<T>
where
T: Copy + NumericTrait,
{
vals[0].safe_sin()?.inverse()
}
make_instruction!(int, int, _arcsin, i128, 1);
make_instruction!(float, float, _arcsin, Decimal, 1);
/// Runs cos on a single item.
fn _cos<T>(vals: Vec<T>) -> Option<T>
where
T: Copy + NumericTrait,
{
vals[0].safe_cos()
}
make_instruction!(int, int, _cos, i128, 1);
make_instruction!(float, float, _cos, Decimal, 1);
/// Runs arcsin on a single item.
fn _arccos<T>(vals: Vec<T>) -> Option<T>
where
T: Copy + NumericTrait,
{
vals[0].safe_cos()?.inverse()
}
make_instruction!(int, int, _arccos, i128, 1);
make_instruction!(float, float, _arccos, Decimal, 1);
/// Runs tan on a single item.
fn _tan<T>(vals: Vec<T>) -> Option<T>
where
T: Copy + NumericTrait,
{
vals[0].safe_tan()
}
make_instruction!(int, int, _tan, i128, 1);
make_instruction!(float, float, _tan, Decimal, 1);
/// Runs arctan on a single item.
fn _arctan<T>(vals: Vec<T>) -> Option<T>
where
T: Copy + NumericTrait,
{
vals[0].safe_tan()?.inverse()
}
make_instruction!(int, int, _arctan, i128, 1);
make_instruction!(float, float, _arctan, Decimal, 1);
/// Converts a single value from a float to an arbitrary type.
fn _from_int<T>(vals: Vec<i128>) -> Option<T>
where
T: Copy + CastingTrait,
{
T::from_int(vals[0])
}
make_instruction_out!(int, float, _from_int, i128, 1);
/// Converts a single value from a float to an arbitrary type.
fn _from_float<T>(vals: Vec<Decimal>) -> Option<T>
where
T: Copy + CastingTrait,
{
T::from_float(vals[0])
}
make_instruction_out!(float, int, _from_float, Decimal, 1);
/// Converts a bool to a to a new type.
fn _from_boolean<T>(vals: Vec<bool>) -> Option<T>
where
T: Copy + CastingTrait,
{
T::from_bool(vals[0])
}
make_instruction_out!(boolean, int, _from_boolean, bool, 1);
make_instruction_out!(boolean, float, _from_boolean, bool, 1);
/// Takes the log base 10 of a single Decimal. Acts as a
/// NoOp if the value is 0. If the value is negative, takes
/// the absolute value of the number.
fn _log<T>(vals: Vec<T>) -> Option<T>
where
T: Copy + NumericTrait,
{
vals[0].absolute().safe_log10()
}
make_instruction!(int, int, _log, i128, 1);
make_instruction!(float, float, _log, Decimal, 1);
/// Takes the exp of a single value. Ints get truncated.
fn _exp<T>(vals: Vec<T>) -> Option<T>
where
T: Copy + NumericTrait,
{
vals[0].safe_exp()
}
make_instruction!(int, int, _exp, i128, 1);
make_instruction!(float, float, _exp, Decimal, 1);
/// Takes the square root of the absolute value of a single value.
fn _sqrt<T>(vals: Vec<T>) -> Option<T>
where
T: Copy + NumericTrait,
{
vals[0].safe_sqrt()
}
make_instruction!(int, int, _sqrt, i128, 1);
make_instruction!(float, float, _sqrt, Decimal, 1);
/// Takes the inverse of a single value. If the number is 0,
/// does nothing (returns None). Truncates an int to 0.
fn _inv<T>(vals: Vec<T>) -> Option<T>
where
T: Copy + NumericTrait,
{
vals[0].inverse()
}
make_instruction!(int, int, _inv, i128, 1);
make_instruction!(float, float, _inv, Decimal, 1);
/// Takes the absolute value of the top number
fn _abs<T>(vals: Vec<T>) -> Option<T>
where
T: Copy + NumericTrait,
{
Some(vals[0].absolute())
}
make_instruction!(int, int, _abs, i128, 1);
make_instruction!(float, float, _abs, Decimal, 1);
/// Reverses the sign of the top number
fn _sign_reverse<T>(vals: Vec<T>) -> Option<T>
where
T: Copy + NumericTrait,
{
Some(vals[0].sign_reverse())
}
make_instruction!(int, int, _sign_reverse, i128, 1);
make_instruction!(float, float, _sign_reverse, Decimal, 1);
/// Squares the top number
fn _square<T>(vals: Vec<T>) -> Option<T>
where
T: Copy + NumericTrait,
{
Some(vals[0].square())
}
make_instruction!(int, int, _square, i128, 1);
make_instruction!(float, float, _square, Decimal, 1);
/// A list of all of the defined int functions in this file.
/// Must manually register functions in this list if added.
pub fn int_instructions() -> Vec<fn(&mut PushState)> {
vec![
int_add,
int_sub,
int_mult,
int_div,
int_rem,
int_max,
int_min,
int_inc,
int_dec,
int_lt,
int_gt,
int_lte,
int_gte,
int_sin,
int_arcsin,
int_cos,
int_arccos,
int_tan,
int_arctan,
int_from_float,
int_from_boolean,
int_log,
int_exp,
int_sqrt,
int_inv,
int_abs,
int_sign_reverse,
int_square,
]
}
/// All of the float instructions declared in this file.
pub fn float_instructions() -> Vec<fn(&mut PushState)> {
vec![
float_add,
float_sub,
float_mult,
float_div,
float_rem,
float_max,
float_min,
float_inc,
float_dec,
float_lt,
float_gt,
float_lte,
float_gte,
float_sin,
float_arcsin,
float_cos,
float_arccos,
float_tan,
float_arctan,
float_from_int,
float_from_boolean,
float_log,
float_exp,
float_sqrt,
float_inv,
float_abs,
float_sign_reverse,
float_square,
]
}
#[cfg(test)]
mod tests {
use super::*;
use crate::push::state::EMPTY_STATE;
use rust_decimal::dec;
/// Tests the _add function.
#[test]
fn add_test() {
let vals: Vec<i64> = vec![1, 2];
assert_eq!(Some(3), _add(vals));
let vals: Vec<Decimal> = vec![dec!(1.1), dec!(2.2)];
assert_eq!(Some(dec!(3.3)), _add(vals));
}
/// Tests the _sub function.
#[test]
fn sub_test() {
let vals: Vec<i64> = vec![1, 2];
assert_eq!(Some(1), _sub(vals));
let vals: Vec<Decimal> = vec![dec!(1.1), dec!(2.2)];
assert_eq!(Some(dec!(1.1)), _sub(vals));
}
/// Tests the _mult function.
#[test]
fn mult_test() {
let vals: Vec<i128> = vec![4, 5];
assert_eq!(Some(20), _mult(vals));
let vals: Vec<Decimal> = vec![dec!(1.1), dec!(2.2)];
assert_eq!(Some(dec!(2.42)), _mult(vals));
}
/// Tests the _div function
#[test]
fn div_test() {
let vals: Vec<i128> = vec![4, 20];
assert_eq!(Some(5), _div(vals));
let vals: Vec<i128> = vec![3, 20];
assert_eq!(Some(6), _div(vals));
let vals: Vec<Decimal> = vec![dec!(1.6), dec!(2.2)];
assert_eq!(Some(dec!(1.375)), _div(vals));
let vals: Vec<i128> = vec![0, 1];
assert_eq!(None, _div(vals));
}
/// Tests the _rem function
#[test]
fn rem_test() {
let vals: Vec<i128> = vec![3, 20];
assert_eq!(Some(2), _rem(vals));
let vals: Vec<i128> = vec![20, 20];
assert_eq!(Some(0), _rem(vals));
let vals: Vec<i128> = vec![0, 9];
assert_eq!(None, _rem(vals));
}
/// Tests the _max function
#[test]
fn max_test() {
let vals: Vec<i128> = vec![1, 2];
assert_eq!(Some(2), _max(vals));
let vals: Vec<i128> = vec![3, 0];
assert_eq!(Some(3), _max(vals));
let vals: Vec<Decimal> = vec![dec!(2.2), dec!(1.1)];
assert_eq!(Some(dec!(2.2)), _max(vals));
let vals: Vec<Decimal> = vec![dec!(3.3), dec!(-1.1)];
assert_eq!(Some(dec!(3.3)), _max(vals));
}
/// Tests the _min function
#[test]
fn min_test() {
let vals: Vec<i128> = vec![1, 2];
assert_eq!(Some(1), _min(vals));
let vals: Vec<i128> = vec![3, 0];
assert_eq!(Some(0), _min(vals));
let vals: Vec<Decimal> = vec![dec!(2.2), dec!(1.1)];
assert_eq!(Some(dec!(1.1)), _min(vals));
let vals: Vec<Decimal> = vec![dec!(3.3), dec!(-1.1)];
assert_eq!(Some(dec!(-1.1)), _min(vals));
}
/// Tests the _inc and _dec functions
#[test]
fn inc_dec_test() {
let vals: Vec<i128> = vec![2];
assert_eq!(Some(3), _inc(vals));
let vals: Vec<i128> = vec![10];
assert_eq!(Some(9), _dec(vals));
let vals: Vec<Decimal> = vec![dec!(2.2)];
assert_eq!(Some(dec!(3.2)), _inc(vals));
let vals: Vec<Decimal> = vec![dec!(5.6)];
assert_eq!(Some(dec!(4.6)), _dec(vals));
}
/// Tests the _lt, _gt, _lte, and _gte functions
#[test]
fn lt_gt_lte_gte_test() {
let vals: Vec<i128> = vec![3, 2];
assert_eq!(Some(true), _lt(vals));
let vals: Vec<i128> = vec![1, 4];
assert_eq!(Some(false), _lt(vals));
let vals: Vec<i128> = vec![3, 3];
assert_eq!(Some(false), _lt(vals));
let vals: Vec<i128> = vec![2, 3];
assert_eq!(Some(true), _gt(vals));
let vals: Vec<i128> = vec![4, 1];
assert_eq!(Some(false), _gt(vals));
let vals: Vec<i128> = vec![3, 3];
assert_eq!(Some(false), _gt(vals));
let vals: Vec<i128> = vec![3, 2];
assert_eq!(Some(true), _lte(vals));
let vals: Vec<i128> = vec![1, 4];
assert_eq!(Some(false), _lte(vals));
let vals: Vec<i128> = vec![3, 3];
assert_eq!(Some(true), _lte(vals));
let vals: Vec<i128> = vec![2, 3];
assert_eq!(Some(true), _gte(vals));
let vals: Vec<i128> = vec![4, 1];
assert_eq!(Some(false), _gte(vals));
let vals: Vec<i128> = vec![3, 3];
assert_eq!(Some(true), _gte(vals));
}
/// Tests the various trig functions.
#[test]
fn trig_tests() {
let vals = vec![Decimal::PI];
assert_eq!(Some(dec!(0.0)), _sin(vals));
let vals = vec![Decimal::QUARTER_PI];
assert_eq!(Some(dec!(1.4142135623869512272301701717)), _arcsin(vals));
let vals = vec![Decimal::PI];
assert_eq!(Some(dec!(-1.0)), _cos(vals));
let vals = vec![Decimal::QUARTER_PI];
assert_eq!(Some(dec!(1.4142135626023406165042434783)), _arccos(vals));
let vals = vec![Decimal::PI];
assert_eq!(Some(dec!(0.0)), _tan(vals));
let vals = vec![Decimal::QUARTER_PI];
assert_eq!(Some(dec!(1.0000000043184676055890307049)), _arctan(vals));
}
/// Tests that the various addition functions.
#[test]
fn state_add() {
let mut test_state = EMPTY_STATE;
test_state.int = vec![1, 2];
test_state.float = vec![dec!(1.1), dec!(2.2)];
int_add(&mut test_state);
assert_eq!(vec![3], test_state.int);
float_add(&mut test_state);
assert_eq!(vec![dec!(3.3)], test_state.float);
}
/// Tests the various subtraction functions.
#[test]
fn state_sub() {
let mut test_state = EMPTY_STATE;
test_state.int = vec![1, 2];
test_state.float = vec![dec!(1.1), dec!(2.2)];
int_sub(&mut test_state);
assert_eq!(vec![-1], test_state.int);
float_sub(&mut test_state);
assert_eq!(vec![dec!(-1.1)], test_state.float);
}
/// Tests the various multiplication functions.
#[test]
fn state_mult() {
let mut test_state = EMPTY_STATE;
test_state.int = vec![0];
int_mult(&mut test_state);
assert_eq!(vec![0], test_state.int);
test_state.int = vec![10, 3, 2];
test_state.float = vec![dec!(1.1), dec!(2.2)];
int_mult(&mut test_state);
assert_eq!(vec![10, 6], test_state.int);
float_mult(&mut test_state);
assert_eq!(vec![dec!(2.42)], test_state.float);
}
/// Tests the division functions in the state
#[test]
fn state_div() {
let mut test_state = EMPTY_STATE;
test_state.int = vec![0];
int_div(&mut test_state);
assert_eq!(vec![0], test_state.int);
test_state.int = vec![2, 0];
int_div(&mut test_state);
assert_eq!(vec![2, 0], test_state.int);
test_state.int = vec![6, 3];
int_div(&mut test_state);
assert_eq!(vec![2], test_state.int);
test_state.float = vec![dec!(2.2), dec!(1.6)];
float_div(&mut test_state);
assert_eq!(vec![dec!(1.375)], test_state.float);
}
/// Tests the remainder functions in the state.
#[test]
fn state_rem() {
let mut test_state = EMPTY_STATE;
test_state.int = vec![0];
int_rem(&mut test_state);
assert_eq!(vec![0], test_state.int);
test_state.int = vec![2, 0];
int_rem(&mut test_state);
assert_eq!(vec![2, 0], test_state.int);
test_state.int = vec![60, 80, 20, 3];
int_rem(&mut test_state);
assert_eq!(vec![60, 80, 2], test_state.int);
test_state.float = vec![dec!(2.7), dec!(1.2)];
float_rem(&mut test_state);
assert_eq!(vec![dec!(0.3)], test_state.float);
}
/// Tests the min and max functions in the state
#[test]
fn state_min_max() {
let mut test_state = EMPTY_STATE;
test_state.int = vec![0];
int_max(&mut test_state);
assert_eq!(vec![0], test_state.int);
test_state.int = vec![0];
int_min(&mut test_state);
assert_eq!(vec![0], test_state.int);
test_state.int = vec![1, 2, 3];
int_max(&mut test_state);
assert_eq!(vec![1, 3], test_state.int);
test_state.int = vec![1, 2, 3];
int_min(&mut test_state);
assert_eq!(vec![1, 2], test_state.int);
test_state.float = vec![dec!(1.2), dec!(4.6)];
float_max(&mut test_state);
assert_eq!(vec![dec!(4.6)], test_state.float);
test_state.float = vec![dec!(0.0), dec!(1.2), dec!(4.6)];
float_min(&mut test_state);
assert_eq!(vec![dec!(0.0), dec!(1.2)], test_state.float);
}
/// Tests the inc and dec functions in the state
#[test]
fn state_inc_dec() {
let mut test_state = EMPTY_STATE;
test_state.int = vec![];
int_inc(&mut test_state);
let empty_vec: Vec<i128> = vec![];
assert_eq!(empty_vec, test_state.int);
drop(empty_vec);
test_state.int = vec![-2, 1];
int_inc(&mut test_state);
assert_eq!(vec![-2, 2], test_state.int);
test_state.int = vec![-2, 1];
int_dec(&mut test_state);
assert_eq!(vec![-2, 0], test_state.int);
test_state.float = vec![dec!(1.1)];
float_inc(&mut test_state);
assert_eq!(vec![dec!(2.1)], test_state.float);
test_state.float = vec![dec!(1.1)];
float_dec(&mut test_state);
assert_eq!(vec![dec!(0.1)], test_state.float);
}
/// Tests the lt, gt, lte, gte functions in the state
#[test]
fn state_lt_gt_lte_gte() {
let mut test_state = EMPTY_STATE;
test_state.int = vec![2, 3];
int_lt(&mut test_state);
assert_eq!(vec![true], test_state.boolean);
test_state.int = vec![4, 1];
test_state.boolean = vec![];
int_lt(&mut test_state);
assert_eq!(vec![false], test_state.boolean);
test_state.int = vec![3, 3];
test_state.boolean = vec![];
int_lt(&mut test_state);
assert_eq!(vec![false], test_state.boolean);
test_state.int = vec![3, 2];
test_state.boolean = vec![];
int_gt(&mut test_state);
assert_eq!(vec![true], test_state.boolean);
test_state.int = vec![1, 4];
test_state.boolean = vec![];
int_gt(&mut test_state);
assert_eq!(vec![false], test_state.boolean);
test_state.int = vec![3, 3];
test_state.boolean = vec![];
int_gt(&mut test_state);
assert_eq!(vec![false], test_state.boolean);
test_state.int = vec![2, 3];
test_state.boolean = vec![];
int_lte(&mut test_state);
assert_eq!(vec![true], test_state.boolean);
test_state.int = vec![4, 1];
test_state.boolean = vec![];
int_lte(&mut test_state);
assert_eq!(vec![false], test_state.boolean);
test_state.int = vec![3, 3];
test_state.boolean = vec![];
int_lte(&mut test_state);
assert_eq!(vec![true], test_state.boolean);
test_state.int = vec![3, 2];
test_state.boolean = vec![];
int_gte(&mut test_state);
assert_eq!(vec![true], test_state.boolean);
test_state.int = vec![1, 4];
test_state.boolean = vec![];
int_gte(&mut test_state);
assert_eq!(vec![false], test_state.boolean);
test_state.int = vec![3, 3];
test_state.boolean = vec![];
int_gte(&mut test_state);
assert_eq!(vec![true], test_state.boolean);
}
/// Tests the various trig functions when they should revert.
#[test]
fn state_trig() {
let mut test_state = EMPTY_STATE;
test_state.float = vec![Decimal::HALF_PI];
float_tan(&mut test_state);
assert_eq!(vec![Decimal::HALF_PI], test_state.float);
test_state.float = vec![Decimal::HALF_PI];
float_arccos(&mut test_state);
assert_eq!(vec![Decimal::HALF_PI], test_state.float);
test_state.float = vec![dec!(3.4), Decimal::PI];
float_arcsin(&mut test_state);
assert_eq!(vec![dec!(3.4), Decimal::PI], test_state.float);
}
/// Tests the int and float casting functions
#[test]
fn state_cast() {
let mut test_state = EMPTY_STATE;
test_state.int = vec![0, 1];
float_from_int(&mut test_state);
assert_eq!(vec![dec!(1.0)], test_state.float);
test_state.int.clear();
test_state.float = vec![dec!(2.1)];
int_from_float(&mut test_state);
assert_eq!(vec![2], test_state.int);
}
/// Tests the log function
#[test]
fn state_log() {
let mut test_state = EMPTY_STATE;
test_state.int = vec![1];
int_log(&mut test_state);
assert_eq!(vec![0], test_state.int);
test_state.int.clear();
test_state.float = vec![dec!(2)];
float_log(&mut test_state);
assert_eq!(vec![dec!(0.3010299956639811952137388949)], test_state.float);
test_state.float.clear();
test_state.int = vec![6, 7, 0];
int_log(&mut test_state);
assert_eq!(vec![6, 7, 0], test_state.int);
test_state.float = vec![dec!(-4.5)];
float_log(&mut test_state);
assert_eq!(vec![dec!(0.6532125137753436793763169119)], test_state.float);
}
/// Tests the exp function
#[test]
fn state_exp() {
let mut test_state = EMPTY_STATE;
test_state.int = vec![0];
int_exp(&mut test_state);
assert_eq!(vec![1], test_state.int);
test_state.int = vec![0, 2];
int_exp(&mut test_state);
assert_eq!(vec![0, 7], test_state.int);
test_state.int.clear();
test_state.float = vec![dec!(1.2)];
float_exp(&mut test_state);
assert_eq!(vec![dec!(3.3201169022444051948051948052)], test_state.float);
}
/// Tests the sqrt function
#[test]
fn state_sqrt() {
let mut test_state = EMPTY_STATE;
test_state.int = vec![4];
int_sqrt(&mut test_state);
assert_eq!(vec![2], test_state.int);
test_state.int = vec![5];
int_sqrt(&mut test_state);
assert_eq!(vec![2], test_state.int);
test_state.float = vec![dec!(4.84)];
float_sqrt(&mut test_state);
assert_eq!(vec![dec!(2.2)], test_state.float);
test_state.int = vec![-1];
int_sqrt(&mut test_state);
assert_eq!(vec![1], test_state.int);
test_state.float = vec![dec!(-1.0)];
float_sqrt(&mut test_state);
assert_eq!(vec![dec!(1.0)], test_state.float);
}
/// Tests the inv function
#[test]
fn state_inv() {
let mut test_state = EMPTY_STATE;
test_state.int = vec![-1, 10];
int_inv(&mut test_state);
assert_eq!(vec![-1, 0], test_state.int);
test_state.float = vec![dec!(-10)];
float_inv(&mut test_state);
assert_eq!(vec![dec!(-0.1)], test_state.float);
test_state.int = vec![0];
int_inv(&mut test_state);
assert_eq!(vec![0], test_state.int);
}
/// Tests the abs function
#[test]
fn state_abs() {
let mut test_state = EMPTY_STATE;
test_state.int = vec![-1];
int_abs(&mut test_state);
assert_eq!(vec![1], test_state.int);
test_state.float = vec![dec!(-2.7)];
float_abs(&mut test_state);
assert_eq!(vec![dec!(2.7)], test_state.float);
}
/// Tests the sign reverse function
#[test]
fn state_sign_reverse() {
let mut test_state = EMPTY_STATE;
test_state.int = vec![-2];
int_sign_reverse(&mut test_state);
assert_eq!(vec![2], test_state.int);
test_state.int = vec![3];
int_sign_reverse(&mut test_state);
assert_eq!(vec![-3], test_state.int);
test_state.float = vec![dec!(3.0), dec!(-2.0)];
float_sign_reverse(&mut test_state);
assert_eq!(vec![dec!(3.0), dec!(2.0)], test_state.float);
test_state.float = vec![dec!(3.0)];
float_sign_reverse(&mut test_state);
assert_eq!(vec![dec!(-3.0)], test_state.float);
}
/// Tests the square function
#[test]
fn state_square() {
let mut test_state = EMPTY_STATE;
test_state.int = vec![2, 3];
int_square(&mut test_state);
assert_eq!(vec![2, 9], test_state.int);
test_state.float = vec![dec!(-4.0)];
float_square(&mut test_state);
assert_eq!(vec![dec!(16.0)], test_state.float);
}
}

View File

@ -1,191 +0,0 @@
use rust_decimal::Decimal;
use rust_decimal::prelude::*;
use std::ops::Div;
/// This trait houses various methods for making instructions
/// more generic instead of declaring a separate function for each
/// stack. In a way I'm doing that here, but in a more Rusty way.
///
/// Trig functions named safe rather than checked to not overlap
/// with Decimal library's checked function names.
pub trait NumericTrait: Sized + Div<Output = Self> {
fn checked_div(self, v: Self) -> Option<Self>;
fn checked_mod(self, v: Self) -> Option<Self>;
fn increment(self) -> Self;
fn decrement(self) -> Self;
fn safe_sin(self) -> Option<Self>;
fn safe_cos(self) -> Option<Self>;
fn safe_tan(self) -> Option<Self>;
fn inverse(self) -> Option<Self>;
fn safe_exp(self) -> Option<Self>;
fn absolute(self) -> Self;
fn safe_log10(self) -> Option<Self>;
fn safe_sqrt(self) -> Option<Self>;
fn sign_reverse(self) -> Self;
fn square(self) -> Self;
}
impl NumericTrait for Decimal {
fn checked_div(self, v: Self) -> Option<Self> {
if v == dec!(0.0) { None } else { Some(self / v) }
}
fn checked_mod(self, v: Self) -> Option<Self> {
if v == dec!(0.0) { None } else { Some(self % v) }
}
fn increment(self) -> Self {
self + dec!(1.0)
}
fn decrement(self) -> Self {
self - dec!(1.0)
}
fn safe_sin(self) -> Option<Self> {
self.checked_sin()
}
fn safe_cos(self) -> Option<Self> {
self.checked_cos()
}
fn safe_tan(self) -> Option<Self> {
self.checked_tan()
}
fn inverse(self) -> Option<Self> {
dec!(1.0).checked_div(self)
}
fn safe_exp(self) -> Option<Self> {
self.checked_exp()
}
fn absolute(self) -> Self {
self.abs()
}
fn safe_log10(self) -> Option<Self> {
self.absolute().checked_log10()
}
fn safe_sqrt(self) -> Option<Self> {
self.absolute().sqrt()
}
fn sign_reverse(self) -> Self {
self * dec!(-1)
}
fn square(self) -> Self {
self * self
}
}
impl NumericTrait for i128 {
fn checked_div(self, v: Self) -> Option<Self> {
if v == 0 { None } else { Some(self / v) }
}
fn checked_mod(self, v: Self) -> Option<Self> {
if v == 0 { None } else { Some(self % v) }
}
fn increment(self) -> Self {
self + 1
}
fn decrement(self) -> Self {
self - 1
}
/// Casts the i128 to a Decimal and takes the checked_sin
/// of the value. Casts the calculated value back to an i128.
fn safe_sin(self) -> Option<Self> {
Decimal::from_i128(self)?.checked_sin()?.to_i128()
}
fn safe_cos(self) -> Option<Self> {
Decimal::from_i128(self)?.checked_cos()?.to_i128()
}
fn safe_tan(self) -> Option<Self> {
Decimal::from_i128(self)?.checked_tan()?.to_i128()
}
fn inverse(self) -> Option<Self> {
if self == 0 { None } else { Some(1 / self) }
}
fn safe_exp(self) -> Option<Self> {
Decimal::from_i128(self)?.checked_exp()?.to_i128()
}
fn absolute(self) -> Self {
self.abs()
}
fn safe_log10(self) -> Option<Self> {
Decimal::from_i128(self)?
.absolute()
.checked_log10()?
.to_i128()
}
fn safe_sqrt(self) -> Option<Self> {
Decimal::from_i128(self)?.absolute().sqrt()?.to_i128()
}
fn sign_reverse(self) -> Self {
-1 * self
}
fn square(self) -> Self {
self * self
}
}
/// A trait for types to implement logical functions that work
/// for push types.
pub trait LogicalTrait {
fn logical_and(self, v: Self) -> Self;
fn logical_or(self, v: Self) -> Self;
fn logical_not(self) -> Self;
fn logical_xor(self, v: Self) -> Self;
}
impl LogicalTrait for bool {
fn logical_and(self, v: Self) -> Self {
self && v
}
fn logical_or(self, v: Self) -> Self {
self || v
}
fn logical_not(self) -> Self {
!self
}
fn logical_xor(self, v: Self) -> Self {
match (self, v) {
(true, true) | (false, false) => false,
_ => true,
}
}
}
/// A trait for uniform conversions between types.
pub trait CastingTrait: Sized {
fn from_bool(v: bool) -> Option<Self>;
fn from_int(v: i128) -> Option<Self>;
fn from_float(v: Decimal) -> Option<Self>;
}
impl CastingTrait for i128 {
fn from_bool(v: bool) -> Option<Self> {
Some(if v { 1 } else { 0 })
}
fn from_int(v: i128) -> Option<Self> {
Some(v)
}
fn from_float(v: Decimal) -> Option<Self> {
v.to_i128()
}
}
impl CastingTrait for Decimal {
fn from_bool(v: bool) -> Option<Self> {
Some(if v { dec!(1.0) } else { dec!(0.0) })
}
fn from_int(v: i128) -> Option<Self> {
Decimal::from_i128(v)
}
fn from_float(v: Decimal) -> Option<Self> {
Some(v)
}
}
impl CastingTrait for bool {
fn from_bool(v: bool) -> Option<Self> {
Some(v)
}
fn from_int(v: i128) -> Option<Self> {
Some(if v != 0 { true } else { false })
}
fn from_float(v: Decimal) -> Option<Self> {
Some(if v != dec!(0.0) { true } else { false })
}
}

View File

@ -1 +0,0 @@

View File

@ -1,36 +0,0 @@
use instructions::utils::NumericTrait;
use rust_decimal::MathematicalOps;
use rust_decimal::prelude::*;
mod instructions;
mod push;
fn test_func() {}
fn another_test_func() {}
fn main() {
// let sixth_pi = Decimal::PI / dec!(6.0);
// let result = dec!(1).sin();
// let result = Decimal::PI.sin().checked_div(Decimal::PI.cos());
// let result = dec!(1.0) / Decimal::HALF_PI.sin();
// let result = sixth_pi.sin();
// let result = Decimal::HALF_PI.cos();
// let result = Decimal::PI.sin();
// let result = Decimal::PI.tan();
// let result = dec!(1.0) / Decimal::QUARTER_PI.tan();
// let result = dec!(1.0) / Decimal::QUARTER_PI.cos();
// let result = dec!(1.2).checked_exp();
// let result = dec!(2).log10();
let result = vec![0, 1, 2];
let r_len = result.len();
let fin_result = &result[..r_len - 1];
println!("{fin_result:?}");
// println!("{result:?}");
// println!("{sixth_pi}");
// casting a function call to a usize is a way to
// test for function equality.
// let test_func_result = test_func as usize == test_func as usize;
// println!("{test_func_result}");
}

View File

@ -1,150 +0,0 @@
use crate::push::state::*;
/// The main function that disperses the exec stack Genes into
/// the respective stacks. Also is where the individual instructions
/// (such as int_add) is ran.
pub fn gene_to_stack(state: &mut PushState, gene: Gene) {
match gene {
Gene::GeneInt(x) => state.int.push(x),
Gene::GeneFloat(x) => state.float.push(x),
Gene::GeneBoolean(x) => state.boolean.push(x),
Gene::GeneString(x) => state.string.push(x),
Gene::GeneChar(x) => state.char.push(x),
Gene::GeneVectorInt(x) => state.vector_int.push(x),
Gene::GeneVectorFloat(x) => state.vector_float.push(x),
Gene::GeneVectorBoolean(x) => state.vector_boolean.push(x),
Gene::GeneVectorString(x) => state.vector_string.push(x),
Gene::GeneVectorChar(x) => state.vector_char.push(x),
Gene::StateFunc(func) => func(state),
Gene::Block(x) => state.exec.extend(x.into_iter()),
Gene::Close => panic!("Close found in the exec stack, this should not happen!"),
Gene::Open(_) => panic!("Open found in the exec stack, this should not happen!"),
Gene::Skip => panic!("Skip found in the exec stack, this should not happen!"),
Gene::CrossoverPadding => {
panic!("CrossoverPadding found in the exec stack, this should not happen!")
}
}
}
/// Where a push program's exec stack is interpreted to completion.
/// TODO: Decide where to place loading in a push program.
pub fn interpret_program(state: &mut PushState, step_limit: usize, max_stack_size: isize) {
let mut steps: usize = 0;
while state.exec.len() > 0 && steps < step_limit {
if let Some(gene) = state.exec.pop() {
gene_to_stack(state, gene);
steps += 1;
}
}
}
#[cfg(test)]
mod tests {
use crate::instructions::numeric::int_add;
use super::*;
use rust_decimal::dec;
#[test]
fn gene_to_stack_test() {
let mut test_state = EMPTY_STATE;
gene_to_stack(&mut test_state, Gene::GeneInt(1));
assert_eq!(vec![1], test_state.int);
test_state.int.clear();
gene_to_stack(&mut test_state, Gene::GeneFloat(dec!(1.2)));
gene_to_stack(&mut test_state, Gene::GeneFloat(dec!(2.4)));
assert_eq!(vec![dec!(1.2), dec!(2.4)], test_state.float);
test_state.float.clear();
gene_to_stack(&mut test_state, Gene::GeneBoolean(true));
assert_eq!(vec![true], test_state.boolean);
test_state.boolean.clear();
gene_to_stack(
&mut test_state,
Gene::GeneString("test".as_bytes().to_vec()),
);
assert_eq!(vec!["test".as_bytes().to_vec()], test_state.string);
test_state.string.clear();
gene_to_stack(&mut test_state, Gene::GeneChar('a'));
gene_to_stack(&mut test_state, Gene::GeneChar('b'));
gene_to_stack(&mut test_state, Gene::GeneChar('c'));
assert_eq!(vec!['a', 'b', 'c'], test_state.char);
test_state.char.clear();
gene_to_stack(&mut test_state, Gene::GeneVectorInt(vec![1, 2, 3]));
gene_to_stack(&mut test_state, Gene::GeneVectorInt(vec![4, 5, 6]));
assert_eq!(vec![vec![1, 2, 3], vec![4, 5, 6]], test_state.vector_int);
test_state.vector_int.clear();
gene_to_stack(
&mut test_state,
Gene::GeneVectorFloat(vec![dec!(1.7), dec!(2.4), dec!(3.9)]),
);
gene_to_stack(
&mut test_state,
Gene::GeneVectorFloat(vec![dec!(4.7), dec!(5.4), dec!(6.9)]),
);
assert_eq!(
vec![
vec![dec!(1.7), dec!(2.4), dec!(3.9)],
vec![dec!(4.7), dec!(5.4), dec!(6.9)]
],
test_state.vector_float
);
test_state.vector_float.clear();
gene_to_stack(&mut test_state, Gene::GeneVectorBoolean(vec![true, false]));
assert_eq!(vec![vec![true, false]], test_state.vector_boolean);
test_state.vector_boolean.clear();
gene_to_stack(
&mut test_state,
Gene::GeneVectorString(vec!["test0".as_bytes().to_vec()]),
);
gene_to_stack(
&mut test_state,
Gene::GeneVectorString(vec![
"test1".as_bytes().to_vec(),
"test2".as_bytes().to_vec(),
]),
);
assert_eq!(
vec![
vec!["test0".as_bytes().to_vec()],
vec!["test1".as_bytes().to_vec(), "test2".as_bytes().to_vec()]
],
test_state.vector_string
);
test_state.vector_string.clear();
gene_to_stack(&mut test_state, Gene::GeneVectorChar(vec!['a', 'b']));
gene_to_stack(&mut test_state, Gene::GeneVectorChar(vec!['b', 'c', 'd']));
assert_eq!(
vec![vec!['a', 'b'], vec!['b', 'c', 'd']],
test_state.vector_char
);
test_state.vector_char.clear();
let test_block: Gene = Gene::Block(Box::new(vec![
Gene::GeneInt(1),
Gene::GeneFloat(dec!(2.3)),
Gene::StateFunc(int_add),
]));
test_state.exec.push(Gene::GeneInt(2));
gene_to_stack(&mut test_state, test_block);
assert_eq!(
vec![
Gene::GeneInt(2),
Gene::GeneInt(1),
Gene::GeneFloat(dec!(2.3)),
Gene::StateFunc(int_add)
],
test_state.exec
);
// println!("{:?}", test_state.exec);
}
}

View File

@ -1,2 +0,0 @@
pub mod interpreter;
pub mod state;

View File

@ -1,56 +0,0 @@
use rust_decimal::prelude::*;
/// The declaration of the state that push operates on.
///
/// I chose to use `rust_decimal` crate here because
/// there are round off errors with the build in `f64`.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct PushState {
pub int: Vec<i128>,
pub float: Vec<Decimal>,
pub string: Vec<Vec<u8>>,
pub boolean: Vec<bool>,
pub char: Vec<char>,
pub vector_int: Vec<Vec<i128>>,
pub vector_float: Vec<Vec<Decimal>>,
pub vector_string: Vec<Vec<Vec<u8>>>,
pub vector_boolean: Vec<Vec<bool>>,
pub vector_char: Vec<Vec<char>>,
pub exec: Vec<Gene>,
pub code: Vec<Gene>,
}
pub const EMPTY_STATE: PushState = PushState {
int: vec![],
float: vec![],
string: vec![],
boolean: vec![],
char: vec![],
vector_int: vec![],
vector_float: vec![],
vector_string: vec![],
vector_boolean: vec![],
vector_char: vec![],
exec: vec![],
code: vec![],
};
#[derive(PartialEq, Eq, Debug, Clone)]
pub enum Gene {
GeneInt(i128),
GeneFloat(Decimal),
GeneBoolean(bool),
GeneString(Vec<u8>),
GeneChar(char),
GeneVectorInt(Vec<i128>),
GeneVectorFloat(Vec<Decimal>),
GeneVectorBoolean(Vec<bool>),
GeneVectorString(Vec<Vec<u8>>),
GeneVectorChar(Vec<char>),
StateFunc(fn(&mut PushState)),
Close,
Open(u8),
Skip,
Block(Box<Vec<Gene>>),
CrossoverPadding,
}