finish converting all the functions to new format

This commit is contained in:
Rowan Torbitzky-Lane 2025-04-19 20:47:37 -05:00
parent eb2c033a98
commit 082de08998
4 changed files with 137 additions and 535 deletions

View File

@ -471,6 +471,17 @@ pub fn _reverse(a: Gene) -> Option<Gene> {
})
}
/// Acts as a noop, does nothing to the state internally.
macro_rules! noop {
($stack:ident, $name:ident) => {
paste::item! {
pub fn [< $stack $name >] (_: &mut PushState) {
()
}
}
};
}
macro_rules! make_code_instructions {
($stack:ident) => {
make_instruction_new!(_is_block, $stack, boolean, $stack);
@ -499,6 +510,12 @@ macro_rules! all_code_instructions {
() => {
make_code_instructions!(code);
make_code_instructions!(exec);
// Misc instructions
noop!(code, _noop);
noop!(exec, _noop);
noop!(code, _noop_block);
noop!(exec, _noop_block);
};
}
all_code_instructions!();
@ -1238,4 +1255,19 @@ mod tests {
test_state.code
);
}
#[test]
fn noop_test() {
let mut test_state = EMPTY_STATE;
test_state.int = vec![1, 2];
let test_state_copy = test_state.clone();
code_noop(&mut test_state);
assert_eq!(test_state, test_state_copy);
test_state.int = vec![1, 2];
let test_state_copy = test_state.clone();
exec_noop(&mut test_state);
assert_eq!(test_state, test_state_copy);
}
}

View File

@ -1,4 +1,3 @@
use rust_decimal::Decimal;
use std::cmp::{max, min};
use crate::push::state::{Gene, PushState};
@ -7,216 +6,100 @@ fn min_max_bounds(ndx: i128, length: usize) -> usize {
max(0, min(ndx.unsigned_abs() as usize, length - 1))
}
/// Acts as a NoOp, does nothing with the vals list.
fn _noop<T>(_: Vec<T>) -> Option<T> {
None
}
make_instruction_clone!(code, code, _noop, Gene, 0);
make_instruction_clone!(exec, exec, _noop, Gene, 0);
fn _noop_block<T>(_: Vec<T>) -> Option<T> {
None
}
make_instruction_clone!(code, code, _noop_block, Gene, 0);
make_instruction_clone!(exec, exec, _noop_block, Gene, 0);
/// Pops the top value from the stack
fn _pop<T>(vals: Vec<T>) -> Option<T>
where
T: Clone,
{
// This is suboptimal, how to re-write?
// Calls for a complete overhaul later down the line.
Some(vals[0].clone())
macro_rules! pop {
($in_stack:ident) => {
paste::item! {
pub fn [< $in_stack _pop >] (state: &mut PushState) {
state.$in_stack.pop();
}
}
};
}
macro_rules! gene_map {
(int, $val:ident) => {
Gene::GeneInt($val)
};
(float, $val:ident) => {
Gene::GeneFloat($val)
};
(string, $val:ident) => {
Gene::GeneString($val)
};
(boolean, $val:ident) => {
Gene::GeneBoolean($val)
};
(char, $val:ident) => {
Gene::GeneChar($val)
};
(vector_int, $val:ident) => {
Gene::GeneVectorInt($val)
};
(vector_float, $val:ident) => {
Gene::GeneVectorFloat($val)
};
(vector_string, $val:ident) => {
Gene::GeneVectorString($val)
};
(vector_boolean, $val:ident) => {
Gene::GeneVectorBoolean($val)
};
(vector_char, $val:ident) => {
Gene::GeneVectorChar($val)
};
(code, $val:ident) => {
$val
};
(exec, $val:ident) => {
$val
};
}
make_instruction_no_out!(int, _pop, i128, 1);
make_instruction_no_out!(float, _pop, Decimal, 1);
make_instruction_no_out!(string, _pop, Vec<char>, 1);
make_instruction_no_out!(boolean, _pop, bool, 1);
make_instruction_no_out!(char, _pop, char, 1);
make_instruction_no_out!(vector_int, _pop, Vec<i128>, 1);
make_instruction_no_out!(vector_float, _pop, Vec<Decimal>, 1);
make_instruction_no_out!(vector_string, _pop, Vec<Vec<char>>, 1);
make_instruction_no_out!(vector_boolean, _pop, Vec<bool>, 1);
make_instruction_no_out!(vector_char, _pop, Vec<char>, 1);
make_instruction_no_out!(code, _pop, Gene, 1);
make_instruction_no_out!(exec, _pop, Gene, 1);
/// Wraps a type in its respective Gene
macro_rules! make_code {
($in_stack:ident, $gene:ident) => {
($stack:ident) => {
paste::item! {
pub fn [< code_from_ $in_stack >] (state: &mut PushState) {
if let Some(val) = state.$in_stack.pop() {
state.code.push(Gene::$gene(val));
pub fn [< code_from_ $stack >] (state: &mut PushState) {
if let Some(val) = state.$stack.pop() {
let push_val = gene_map!($stack, val);
state.code.push(push_val);
}
}
}
};
}
make_code!(int, GeneInt);
make_code!(float, GeneFloat);
make_code!(string, GeneString);
make_code!(boolean, GeneBoolean);
make_code!(char, GeneChar);
make_code!(vector_int, GeneVectorInt);
make_code!(vector_float, GeneVectorFloat);
make_code!(vector_string, GeneVectorString);
make_code!(vector_boolean, GeneVectorBoolean);
make_code!(vector_char, GeneVectorChar);
pub fn code_from_exec(state: &mut PushState) {
if let Some(gene) = state.exec.pop() {
state.code.push(gene);
}
}
/// Duplicates an item
pub fn _dup<T: Clone>(vals: Vec<T>) -> Option<Vec<T>> {
Some(vec![vals[0].clone(), vals[0].clone()])
pub fn _dup<T: Clone>(val: T) -> Option<Vec<T>> {
Some(vec![val.clone(), val])
}
make_instruction_mult!(int, int, _dup, i128, 1);
make_instruction_mult!(float, float, _dup, Decimal, 1);
make_instruction_mult!(string, string, _dup, Vec<char>, 1);
make_instruction_mult!(boolean, boolean, _dup, bool, 1);
make_instruction_mult!(char, char, _dup, char, 1);
make_instruction_mult!(vector_int, vector_int, _dup, Vec<i128>, 1);
make_instruction_mult!(vector_float, vector_float, _dup, Vec<Decimal>, 1);
make_instruction_mult!(vector_string, vector_string, _dup, Vec<Vec<char>>, 1);
make_instruction_mult!(vector_boolean, vector_boolean, _dup, Vec<bool>, 1);
make_instruction_mult!(vector_char, vector_char, _dup, Vec<char>, 1);
make_instruction_mult!(code, code, _dup, Gene, 1);
make_instruction_mult!(exec, exec, _dup, Gene, 1);
pub fn _dup_times<T: Clone>(vals: Vec<T>, auxs: Vec<i128>) -> Option<Vec<T>> {
Some(vec![vals[0].clone(); auxs[0] as usize])
pub fn _dup_times<T: Clone>(amt: i128, val: T) -> Option<Vec<T>> {
Some(vec![val; amt as usize])
}
make_instruction_mult_aux!(int, int, _dup_times, i128, 1, int, 1, i128);
make_instruction_mult_aux!(float, float, _dup_times, Decimal, 1, int, 1, i128);
make_instruction_mult_aux!(string, string, _dup_times, Vec<char>, 1, int, 1, i128);
make_instruction_mult_aux!(boolean, boolean, _dup_times, bool, 1, int, 1, i128);
make_instruction_mult_aux!(char, char, _dup_times, char, 1, int, 1, i128);
make_instruction_mult_aux!(
vector_int,
vector_int,
_dup_times,
Vec<i128>,
1,
int,
1,
i128
);
make_instruction_mult_aux!(
vector_float,
vector_float,
_dup_times,
Vec<Decimal>,
1,
int,
1,
i128
);
make_instruction_mult_aux!(
vector_string,
vector_string,
_dup_times,
Vec<Vec<char>>,
1,
int,
1,
i128
);
make_instruction_mult_aux!(
vector_boolean,
vector_boolean,
_dup_times,
Vec<bool>,
1,
int,
1,
i128
);
make_instruction_mult_aux!(
vector_char,
vector_char,
_dup_times,
Vec<char>,
1,
int,
1,
i128
);
make_instruction_mult_aux!(code, code, _dup_times, Gene, 1, int, 1, i128);
make_instruction_mult_aux!(exec, exec, _dup_times, Gene, 1, int, 1, i128);
/// Swaps two values
pub fn _swap<T: Clone>(vals: Vec<T>) -> Option<Vec<T>> {
Some(vec![vals[0].clone(), vals[1].clone()])
pub fn _swap<T: Clone>(a: T, b: T) -> Option<Vec<T>> {
Some(vec![a, b])
}
make_instruction_mult!(int, int, _swap, i128, 2);
make_instruction_mult!(float, float, _swap, Decimal, 2);
make_instruction_mult!(string, string, _swap, Vec<char>, 2);
make_instruction_mult!(boolean, boolean, _swap, bool, 2);
make_instruction_mult!(char, char, _swap, char, 2);
make_instruction_mult!(vector_int, vector_int, _swap, Vec<i128>, 2);
make_instruction_mult!(vector_float, vector_float, _swap, Vec<Decimal>, 2);
make_instruction_mult!(vector_string, vector_string, _swap, Vec<Vec<char>>, 2);
make_instruction_mult!(vector_boolean, vector_boolean, _swap, Vec<bool>, 2);
make_instruction_mult!(vector_char, vector_char, _swap, Vec<char>, 2);
make_instruction_mult!(code, code, _swap, Gene, 2);
make_instruction_mult!(exec, exec, _swap, Gene, 2);
/// Rotates three values
pub fn _rotate<T: Clone>(vals: Vec<T>) -> Option<Vec<T>> {
Some(vec![vals[2].clone(), vals[0].clone(), vals[1].clone()])
pub fn _rotate<T>(a: T, b: T, c: T) -> Option<Vec<T>> {
Some(vec![c, a, b])
}
make_instruction_mult!(int, int, _rotate, i128, 3);
make_instruction_mult!(float, float, _rotate, Decimal, 3);
make_instruction_mult!(string, string, _rotate, Vec<char>, 3);
make_instruction_mult!(boolean, boolean, _rotate, bool, 3);
make_instruction_mult!(char, char, _rotate, char, 3);
make_instruction_mult!(vector_int, vector_int, _rotate, Vec<i128>, 3);
make_instruction_mult!(vector_float, vector_float, _rotate, Vec<Decimal>, 3);
make_instruction_mult!(vector_string, vector_string, _rotate, Vec<Vec<char>>, 3);
make_instruction_mult!(vector_boolean, vector_boolean, _rotate, Vec<bool>, 3);
make_instruction_mult!(vector_char, vector_char, _rotate, Vec<char>, 3);
make_instruction_mult!(code, code, _rotate, Gene, 3);
make_instruction_mult!(exec, exec, _rotate, Gene, 3);
/// Checks if two values are equal
pub fn _equal<T: Clone + Eq>(vals: Vec<T>) -> Option<bool> {
Some(vals[1] == vals[0])
pub fn _equal<T: Eq>(a: T, b: T) -> Option<bool> {
Some(b == a)
}
make_instruction!(int, boolean, _equal, i128, 2);
make_instruction!(float, boolean, _equal, Decimal, 2);
make_instruction_clone!(string, boolean, _equal, Vec<char>, 2);
make_instruction!(boolean, boolean, _equal, bool, 2);
make_instruction!(char, boolean, _equal, char, 2);
make_instruction_clone!(vector_int, boolean, _equal, Vec<i128>, 2);
make_instruction_clone!(vector_float, boolean, _equal, Vec<Decimal>, 2);
make_instruction_clone!(vector_string, boolean, _equal, Vec<Vec<char>>, 2);
make_instruction_clone!(vector_boolean, boolean, _equal, Vec<bool>, 2);
make_instruction_clone!(vector_char, boolean, _equal, Vec<char>, 2);
make_instruction_clone!(code, boolean, _equal, Gene, 2);
make_instruction_clone!(exec, boolean, _equal, Gene, 2);
/// Checks if two values are not equal
pub fn _not_equal<T: Clone + Eq>(vals: Vec<T>) -> Option<bool> {
Some(vals[1] != vals[0])
pub fn _not_equal<T: Clone + Eq>(a: T, b: T) -> Option<bool> {
Some(b != a)
}
make_instruction!(int, boolean, _not_equal, i128, 2);
make_instruction!(float, boolean, _not_equal, Decimal, 2);
make_instruction_clone!(string, boolean, _not_equal, Vec<char>, 2);
make_instruction!(boolean, boolean, _not_equal, bool, 2);
make_instruction!(char, boolean, _not_equal, char, 2);
make_instruction_clone!(vector_int, boolean, _not_equal, Vec<i128>, 2);
make_instruction_clone!(vector_float, boolean, _not_equal, Vec<Decimal>, 2);
make_instruction_clone!(vector_string, boolean, _not_equal, Vec<Vec<char>>, 2);
make_instruction_clone!(vector_boolean, boolean, _not_equal, Vec<bool>, 2);
make_instruction_clone!(vector_char, boolean, _not_equal, Vec<char>, 2);
make_instruction_clone!(code, boolean, _not_equal, Gene, 2);
make_instruction_clone!(exec, boolean, _not_equal, Gene, 2);
/// Removes all values from a stack
macro_rules! flush_state {
($in_stack:ident) => {
paste::item! {
@ -226,19 +109,8 @@ macro_rules! flush_state {
}
};
}
flush_state!(int);
flush_state!(float);
flush_state!(string);
flush_state!(boolean);
flush_state!(char);
flush_state!(vector_int);
flush_state!(vector_float);
flush_state!(vector_string);
flush_state!(vector_boolean);
flush_state!(vector_char);
flush_state!(code);
flush_state!(exec);
/// Returns the depth of a stack
macro_rules! stack_depth {
($in_stack:ident) => {
paste::item! {
@ -248,31 +120,20 @@ macro_rules! stack_depth {
}
};
}
stack_depth!(int);
stack_depth!(float);
stack_depth!(string);
stack_depth!(boolean);
stack_depth!(char);
stack_depth!(vector_int);
stack_depth!(vector_float);
stack_depth!(vector_string);
stack_depth!(vector_boolean);
stack_depth!(vector_char);
stack_depth!(code);
stack_depth!(exec);
macro_rules! yank {
($in_stack:ident, $in_type:expr) => {
($in_stack:ident) => {
paste::item! {
pub fn [< $in_stack _yank >] (state: &mut PushState) {
if state.int.is_empty() || state.$in_stack.is_empty() {
return;
}
let in_stack_len = state.$in_stack.len();
if $in_type == "i128" && in_stack_len < 2 {
let in_stack_name = stringify!($in_stack);
if in_stack_name == "int" && in_stack_len < 2 {
return;
}
// no -1 at the end, handled in the min_max_bounds function
// no -1 from in_stack_len, 1 subtracted within the min_max_bounds function
let idx = min_max_bounds(state.int.pop().unwrap(), in_stack_len);
let item = state.$in_stack.remove(in_stack_len - idx);
state.$in_stack.push(item);
@ -280,39 +141,45 @@ macro_rules! yank {
}
};
}
yank!(int, "i128");
yank!(float, "");
yank!(string, "");
yank!(boolean, "");
yank!(char, "");
yank!(vector_int, "");
yank!(vector_float, "");
yank!(vector_string, "");
yank!(vector_boolean, "");
yank!(vector_char, "");
yank!(code, "");
yank!(exec, "");
macro_rules! make_common_instructions {
($stack:ident) => {
pop!($stack);
make_code!($stack);
make_instruction_new_aux!(_dup, $stack, $stack, $stack);
make_instruction_new_aux!(_dup_times, $stack, $stack, int, $stack);
make_instruction_new_aux!(_swap, $stack, $stack, $stack, $stack);
make_instruction_new_aux!(_rotate, $stack, $stack, $stack, $stack, $stack);
make_instruction_new!(_equal, $stack, boolean, $stack, $stack);
flush_state!($stack);
stack_depth!($stack);
yank!($stack);
};
}
macro_rules! all_common_instructions {
() => {
make_common_instructions!(int);
make_common_instructions!(float);
make_common_instructions!(string);
make_common_instructions!(boolean);
make_common_instructions!(char);
make_common_instructions!(vector_int);
make_common_instructions!(vector_float);
make_common_instructions!(vector_string);
make_common_instructions!(vector_boolean);
make_common_instructions!(vector_char);
make_common_instructions!(code);
make_common_instructions!(exec);
};
}
all_common_instructions!();
#[cfg(test)]
mod tests {
use super::*;
use crate::push::state::EMPTY_STATE;
#[test]
fn noop_test() {
let mut test_state = EMPTY_STATE;
test_state.int = vec![1, 2];
let test_state_copy = test_state.clone();
code_noop(&mut test_state);
assert_eq!(test_state, test_state_copy);
test_state.int = vec![1, 2];
let test_state_copy = test_state.clone();
exec_noop(&mut test_state);
assert_eq!(test_state, test_state_copy);
}
#[test]
fn pop_test() {
let mut test_state = EMPTY_STATE;
@ -423,6 +290,6 @@ mod tests {
test_state.int = vec![1, 2, 3, 4, 5, 6, 7, 8, 2];
int_yank(&mut test_state);
//assert_eq!(vec![1, 2, 3, 4, 5, 7, 8, 6], test_state.int);
assert_eq!(vec![1, 2, 3, 4, 5, 7, 8, 6], test_state.int);
}
}

View File

@ -1,302 +1,5 @@
#[macro_use]
pub mod macros {
/// A macro that makes a push instruction given: the name of the input stack to use,
/// the name of the output stack, an internal function to call, the type of a function,
/// and the arity of the internal function call.
///
/// The `in_stack` argument refers to which push stack should this operate on.
/// The `out_stack` argument refers to which push stack should the result be pushed to.
/// The `fn_name` argument refers to the name of the function that is to operate
/// on the values popped from `in_stack`.
/// The `fn_type` argument refers to the type of `in_stack`. For example, the
/// int stack is type: *Vec<i128>*. `fn_type` is *i128* in this case.
/// The `fn_arity` argument refers to how many popped stack items are needed to
/// execute the instruction. If the amount of items in the stack is less than
/// this value, the instruction does nothing. How many items exactly should be passed
/// as a list to the functions used for calculations.
///
/// What causes an instruction to NoOp:
/// 1) There aren't enough values on a stack to execute an instruction.
/// 2) The internal operation the instruction executes is unable to be ran without
/// erroring such as division by 0.
#[macro_export]
macro_rules! make_instruction {
($in_stack:ident, $out_stack:ident, $fn_name:ident, $fn_type:ty, $fn_arity:stmt) => {
paste::item! {
/// Runs the $fn_name function on the top $fn_arity items from
/// the $in_stack and places the calculated value on the $out_stack.
pub fn [< $in_stack $fn_name >] (state: &mut PushState) {
let in_stack_len = state.$in_stack.len();
if in_stack_len < $fn_arity {
return;
}
let mut inputs: Vec<$fn_type> = Vec::with_capacity($fn_arity);
for n in 1..=$fn_arity {
inputs.push(state.$in_stack[in_stack_len - n]);
}
if let Some(result) = $fn_name(inputs) {
for _ in 0..$fn_arity {
state.$in_stack.pop();
}
state.$out_stack.push(result);
}
}
}
};
}
/// The same as make_instruction above but prepends the output
/// stack to the function name rather than the input stack.
#[macro_export]
macro_rules! make_instruction_out {
($in_stack:ident, $out_stack:ident, $fn_name:ident, $fn_type:ty, $fn_arity:stmt) => {
paste::item! {
/// Runs the $fn_name function on the top $fn_arity items from
/// the $in_stack and places the calculated value on the $out_stack.
pub fn [< $out_stack $fn_name >] (state: &mut PushState) {
let in_stack_len = state.$in_stack.len();
if in_stack_len < $fn_arity {
return;
}
let mut inputs: Vec<$fn_type> = Vec::with_capacity($fn_arity);
for n in 1..=$fn_arity {
inputs.push(state.$in_stack[in_stack_len - n].clone());
}
if let Some(result) = $fn_name(inputs) {
for _ in 0..$fn_arity {
state.$in_stack.pop();
}
state.$out_stack.push(result);
}
}
}
};
}
/// The same as make_instruction but uses clone() to fill the arguments
/// to each function rather than a reference. Is slower, but will be okay
/// for the time being.
#[macro_export]
macro_rules! make_instruction_clone {
($in_stack:ident, $out_stack:ident, $fn_name:ident, $fn_type:ty, $fn_arity:stmt) => {
paste::item! {
/// Runs the $fn_name function on the top $fn_arity items from
/// the $in_stack and places the calculated value on the $out_stack.
#[allow(clippy::reversed_empty_ranges, unused_comparisons)]
pub fn [< $in_stack $fn_name >] (state: &mut PushState) {
let in_stack_len = state.$in_stack.len();
if in_stack_len < $fn_arity {
return;
}
let mut inputs: Vec<$fn_type> = Vec::with_capacity($fn_arity);
for n in 1..=$fn_arity {
inputs.push(state.$in_stack[in_stack_len - n].clone());
}
if let Some(result) = $fn_name(inputs) {
for _ in 0..$fn_arity {
state.$in_stack.pop();
}
state.$out_stack.push(result);
}
}
}
};
}
#[macro_export]
macro_rules! make_instruction_mult {
($in_stack:ident, $out_stack:ident, $fn_name:ident, $fn_type:ty, $fn_arity:stmt) => {
paste::item! {
/// Runs the $fn_name function on the top $fn_arity items from
/// the $in_stack and places the calculated value on the $out_stack.
pub fn [< $in_stack $fn_name >] (state: &mut PushState) {
let in_stack_len = state.$in_stack.len();
if in_stack_len < $fn_arity {
return;
}
let mut inputs: Vec<$fn_type> = Vec::with_capacity($fn_arity);
for n in 1..=$fn_arity {
inputs.push(state.$in_stack[in_stack_len - n].clone());
}
if let Some(result) = $fn_name(inputs) {
for _ in 0..$fn_arity {
state.$in_stack.pop();
}
state.$out_stack.extend(result.into_iter());
}
}
}
};
}
/// Same as the make_instruction macro except it pushes nothing to the
/// output stack.
#[macro_export]
macro_rules! make_instruction_no_out {
($in_stack:ident, $fn_name:ident, $fn_type:ty, $fn_arity:stmt) => {
paste::item! {
/// Runs the $fn_name function on the top $fn_arity items from
/// the $in_stack and places the calculated value on the $out_stack.
#[allow(unused_comparisons)]
pub fn [< $in_stack $fn_name >] (state: &mut PushState) {
let in_stack_len = state.$in_stack.len();
if in_stack_len < $fn_arity {
return;
}
let mut inputs: Vec<$fn_type> = Vec::with_capacity($fn_arity);
for n in 1..=$fn_arity {
inputs.push(state.$in_stack[in_stack_len - n].clone());
}
if let Some(_) = $fn_name(inputs) {
for _ in 0..$fn_arity {
state.$in_stack.pop();
}
}
}
}
};
}
/// Same as `make_instruction!` but can work on two stacks.
///
/// `aux_stack` is an auxiliary stack to be used as input to internal function.
/// `aux_arity` is the amount of the auxiliary stack to use.
/// `aux_type` is the type of the auxiliary stack
#[macro_export]
macro_rules! make_instruction_aux {
($in_stack:ident, $out_stack:ident, $fn_name:ident, $fn_type:ty, $fn_arity:stmt, $aux_stack:ident, $aux_arity:stmt, $aux_type:ty) => {
paste::item! {
/// Runs the $fn_name function on the top $fn_arity items from
/// the $in_stack and places the calculated value on the $out_stack.
/// $aux_stack is also used and popped $aux_arity time(s).
pub fn [< $in_stack $fn_name >] (state: &mut PushState) {
let in_stack_len = state.$in_stack.len();
let aux_stack_len = state.$aux_stack.len();
if in_stack_len < $fn_arity || aux_stack_len < $aux_arity {
return;
}
let mut inputs: Vec<$fn_type> = Vec::with_capacity($fn_arity);
let mut aux_inputs: Vec<$aux_type> = Vec::with_capacity($aux_arity);
for n in 1..=$aux_arity {
aux_inputs.push(state.$aux_stack[aux_stack_len - n].clone());
}
for n in 1..=$fn_arity {
inputs.push(state.$in_stack[in_stack_len - n].clone());
}
if let Some(result) = $fn_name(inputs, aux_inputs) {
for _ in 0..$aux_arity {
state.$aux_stack.pop();
}
for _ in 0..$fn_arity {
state.$in_stack.pop();
}
state.$out_stack.push(result);
}
}
}
};
}
/// Same as make_instruction_mult but can handle one auxiliary variable.
#[macro_export]
macro_rules! make_instruction_mult_aux {
($in_stack:ident, $out_stack:ident, $fn_name:ident, $fn_type:ty, $fn_arity:stmt, $aux_stack:ident, $aux_arity:stmt, $aux_type:ty) => {
paste::item! {
/// Runs the $fn_name function on the top $fn_arity items from
/// the $in_stack and places the calculated value on the $out_stack.
/// $aux_stack is also used and popped $aux_arity time(s).
pub fn [< $in_stack $fn_name >] (state: &mut PushState) {
let in_stack_len = state.$in_stack.len();
let aux_stack_len = state.$aux_stack.len();
if in_stack_len < $fn_arity || aux_stack_len < $aux_arity {
return;
}
let mut inputs: Vec<$fn_type> = Vec::with_capacity($fn_arity);
let mut aux_inputs: Vec<$aux_type> = Vec::with_capacity($aux_arity);
for n in 1..=$aux_arity {
aux_inputs.push(state.$aux_stack[aux_stack_len - n].clone());
}
for n in 1..=$fn_arity {
if stringify!($fn_type) == stringify!($aux_type) {
inputs.push(state.$in_stack[in_stack_len - $aux_arity - n].clone());
} else {
inputs.push(state.$in_stack[in_stack_len - n].clone());
}
//inputs.push(state.$in_stack[in_stack_len - n].clone());
}
if let Some(result) = $fn_name(inputs, aux_inputs) {
for _ in 0..$aux_arity {
state.$aux_stack.pop();
}
for _ in 0..$fn_arity {
state.$in_stack.pop();
}
state.$out_stack.extend(result.into_iter());
}
}
}
};
}
/// Same as `make_instruction!` but can work on three stacks. Is there a way
/// to generalize even this?
///
/// `aux_stack` is an auxiliary stack to be used as input to internal function.
/// `aux_arity` is the amount of the auxiliary stack to use.
/// `aux_type` is the type of the auxiliary stack
#[macro_export]
macro_rules! make_instruction_aux2 {
($in_stack:ident, $out_stack:ident, $fn_name:ident, $fn_type:ty, $fn_arity:stmt, $aux0_stack:ident, $aux0_arity:stmt, $aux0_type:ty, $aux1_stack:ident, $aux1_arity:stmt, $aux1_type:ty) => {
paste::item! {
/// Runs the $fn_name function on the top $fn_arity items from
/// the $in_stack and places the calculated value on the $out_stack.
/// $aux_stack is also used and popped $aux_arity time(s).
pub fn [< $in_stack $fn_name >] (state: &mut PushState) {
let in_stack_len = state.$in_stack.len();
let aux0_stack_len = state.$aux0_stack.len();
let aux1_stack_len = state.$aux1_stack.len();
if in_stack_len < $fn_arity || aux0_stack_len < $aux0_arity || aux1_stack_len < $aux1_arity {
return;
}
if stringify!($aux0_type) == stringify!($aux1_type) {
if aux0_stack_len + aux1_stack_len < $aux0_arity + $aux1_arity {
return;
}
}
let mut inputs: Vec<$fn_type> = Vec::with_capacity($fn_arity);
let mut aux0_inputs: Vec<$aux0_type> = Vec::with_capacity($aux0_arity);
let mut aux1_inputs: Vec<$aux1_type> = Vec::with_capacity($aux1_arity);
for n in 1..=$aux1_arity {
aux1_inputs.push(state.$aux1_stack[aux1_stack_len - n].clone());
}
for n in 1..=$aux0_arity {
if stringify!($aux0_type) == stringify!($aux1_type) {
aux0_inputs.push(state.$aux0_stack[aux0_stack_len - $aux1_arity - n].clone());
} else {
aux0_inputs.push(state.$aux0_stack[aux0_stack_len - n].clone());
}
}
// Stack shouldn't be the same for all three
for n in 1..=$fn_arity {
inputs.push(state.$in_stack[in_stack_len - n].clone());
}
if let Some(result) = $fn_name(inputs, aux0_inputs, aux1_inputs) {
for _ in 0..$aux1_arity {
state.$aux1_stack.pop();
}
for _ in 0..$aux0_arity {
state.$aux0_stack.pop();
}
for _ in 0..$fn_arity {
state.$in_stack.pop();
}
state.$out_stack.push(result);
}
}
}
};
}
/// Runs a function and ensures the necessary variables are extracted from a state without error
macro_rules! make_instruction_new {
($func:ident, $prefix:ident, $out_stack:ident, $($stacks:ident), *) => {

View File

@ -99,7 +99,7 @@ impl Gene {
_ => continue,
}
}
return None;
None
}
val => Some(val),
}