overhaul to down-sampling. Separated selection from the down-sampling type.
Also, added to the docs to help startup faster
This commit is contained in:
parent
b4e4552acb
commit
e3ef43e95a
@ -1,27 +1,56 @@
|
||||
# Downsampling the Training Data
|
||||
Downsampling the Training Data
|
||||
=
|
||||
|
||||
Downsampling is a very simple way to improve the efficiency of your evolutionary runs. It might allow for deeper evolutionary searches and a greater success rate.
|
||||
|
||||
Using Downsampled-Lexicase selection with propeller is easy:
|
||||
Using Downsampled selection with propeller is easy:
|
||||
|
||||
Set the :parent-selection argument to whichever selection strategy you would like, and set the :downsample? argument to true as follows:
|
||||
|
||||
Set the :parent-selection argument to :ds-lexicase as follows
|
||||
```clojure
|
||||
lein run -m propeller.problems.simple-regression :parent-selection :ds-lexicase <ARGS>
|
||||
lein run -m propeller.problems.simple-regression :parent-selection :lexicase :downsample? true
|
||||
```
|
||||
|
||||
Arguments:
|
||||
The number of evaluations is held constant when comparing to a full training set run, so set the :max-generations to a number of generations that you would have gone to using a **full** sample.
|
||||
|
||||
## Downsample Functions
|
||||
|
||||
In this repository, you have access to 3 different downsampling functions. These are the methods used to take a down-sample from the entire training set.
|
||||
|
||||
To use them, add the argument ```:ds-function``` followed by which function you would like to us
|
||||
|
||||
The list is
|
||||
- ```:case-maxmin``` - This is the method used for informed down-sampled lexicase selection
|
||||
- ```:case-maxmin-auto``` - This method automatically determines the downsample size
|
||||
- ```:case-rand```- Random Sampling
|
||||
|
||||
### Using ```:case-maxmin```:
|
||||
|
||||
In order to use regular informed down-sampled selection, you must specify a few things:
|
||||
- ```:downsample-rate```- This is the $r$ parameter: what proportion of the full sample should be in the down-sample $\in [0,1]$
|
||||
- ```:ds-parent-rate``` - This is the $\rho$ parameter: what proportion of parents are used to evaluate case distances $\in [0,1]$
|
||||
- ```:ds-parent-gens``` - This is the $k$ parameter: How many generations in between parent evaluations for distances $\in \{1,2,3, \dots\}$
|
||||
|
||||
### Using ```:case-maxmin-auto```:
|
||||
|
||||
In order to use automatic informed down-sampled selection, you must specify a few things:
|
||||
- ```:case-delta ```- This is the $\Delta$ parameter: How close can the farthest case be from its closest case before we stop adding to the down-sample
|
||||
- ```:ids-type``` - Either ```:elite``` or ```:solved ``` - Specifies whether we are using elite/not-elite or solved/not-solved as our binary-fication of case solve vectors.
|
||||
- ```:ds-parent-rate``` - This is the $\rho$ parameter: what proportion of parents are used to evaluate case distances $\in [0,1]$
|
||||
- ```:ds-parent-gens``` - This is the $k$ parameter: How many generations in between parent evaluations for distances $\in \{1,2,3, \dots\}$
|
||||
|
||||
### Using ```:case-rand```:
|
||||
|
||||
In order to use regular randomly down-sampled selection, you must specify a few things:
|
||||
- ```:downsample-rate```- This is the $r$ parameter: what proportion of the full sample should be in the down-sample $\in [0,1]$
|
||||
|
||||
|
||||
- Case Downsampling function:
|
||||
- Random sampling (default)
|
||||
- Case tournament selection
|
||||
```clojure
|
||||
:ds-function :case-tournament
|
||||
```
|
||||
- Case Lexicase Selection
|
||||
WIP
|
||||
- Downsample Rate:
|
||||
```clojure
|
||||
:downsample-rate 0.1
|
||||
```
|
||||
|
||||
|
||||
|
||||
Here's an example of running informed downsampled lexicase selection with $r=0.1$, $\rho=0.01$ and $k=100$ on the simple classification problem:
|
||||
|
||||
```clojure
|
||||
lein run -m propeller.problems.simple-classification :parent-selection :lexicase :downsample? true :ds-function :case-maxmin :downsample-rate 0.1 :max-generations 300 :ds-parent-rate 0.01 :ds-parent-gens 100
|
||||
```
|
||||
|
||||
|
@ -20,28 +20,6 @@
|
||||
[training-data {:keys [downsample-rate]}]
|
||||
(take (int (* downsample-rate (count training-data))) (shuffle training-data)))
|
||||
|
||||
(defn select-downsample-avg
|
||||
"uses case-tournament selection to select a downsample that is biased to being spread out"
|
||||
[training-data {:keys [downsample-rate case-t-size]}]
|
||||
(let [shuffled-cases (shuffle training-data)
|
||||
goal-size (int (* downsample-rate (count training-data)))]
|
||||
(loop [new-downsample (conj [] (first shuffled-cases))
|
||||
cases-to-pick-from (rest shuffled-cases)]
|
||||
;(prn {:new-downsample new-downsample :cases-to-pick-from cases-to-pick-from})
|
||||
(if (>= (count new-downsample) goal-size)
|
||||
new-downsample
|
||||
(let [tournament (take case-t-size cases-to-pick-from)
|
||||
rest-of-cases (drop case-t-size cases-to-pick-from)
|
||||
case-distances (metrics/mean-of-colls
|
||||
(map (fn [distance-list]
|
||||
(utils/filter-by-index distance-list (map #(:index %) tournament)))
|
||||
(map #(:distances %) new-downsample)))
|
||||
selected-case-index (metrics/argmax case-distances)]
|
||||
(prn {:avg-case-distances case-distances :selected-case-index selected-case-index})
|
||||
(recur (conj new-downsample (nth tournament selected-case-index))
|
||||
(shuffle (concat (utils/drop-nth selected-case-index tournament)
|
||||
rest-of-cases))))))))
|
||||
|
||||
(defn select-downsample-maxmin
|
||||
"selects a downsample that has it's cases maximally far away by sequentially
|
||||
adding cases to the downsample that have their closest case maximally far away"
|
||||
@ -58,10 +36,6 @@
|
||||
(utils/filter-by-index distance-list (map #(:index %) tournament)))
|
||||
(map #(:distances %) new-downsample)))
|
||||
selected-case-index (metrics/argmax min-case-distances)]
|
||||
(if (sequential? (:input1 (first new-downsample)))
|
||||
(prn {:cases-in-ds (map #(first (:input1 %)) new-downsample) :cases-in-tourn (map #(first (:input1 %)) tournament)})
|
||||
(prn {:cases-in-ds (map #(:input1 %) new-downsample) :cases-in-tourn (map #(:input1 %) tournament)}))
|
||||
(prn {:min-case-distances min-case-distances :selected-case-index selected-case-index})
|
||||
(recur (conj new-downsample (nth tournament selected-case-index))
|
||||
(shuffle (utils/drop-nth selected-case-index tournament))))))))
|
||||
|
||||
@ -81,13 +55,8 @@
|
||||
selected-case-index (metrics/argmax min-case-distances)]
|
||||
(if (or (= 0 (count tournament)) (<= (apply max min-case-distances) case-delta))
|
||||
new-downsample
|
||||
(do
|
||||
(if (sequential? (:input1 (first new-downsample)))
|
||||
(prn {:cases-in-ds (map #(first (:input1 %)) new-downsample) :cases-in-tourn (map #(first (:input1 %)) tournament)})
|
||||
(prn {:cases-in-ds (map #(:input1 %) new-downsample) :cases-in-tourn (map #(:input1 %) tournament)}))
|
||||
;(prn {:min-case-distances min-case-distances :selected-case-index selected-case-index})
|
||||
(recur (conj new-downsample (nth tournament selected-case-index))
|
||||
(shuffle (utils/drop-nth selected-case-index tournament)))))))))
|
||||
(shuffle (utils/drop-nth selected-case-index tournament))))))))
|
||||
|
||||
(defn get-distance-between-cases
|
||||
"returns the distance between two cases given a list of individual error vectors, and the index these
|
||||
|
@ -17,13 +17,14 @@
|
||||
|
||||
(defn report
|
||||
"Reports information each generation."
|
||||
[evaluations pop generation argmap]
|
||||
[evaluations pop generation argmap training-data]
|
||||
(let [best (first pop)]
|
||||
(clojure.pprint/pprint {:generation generation
|
||||
:best-plushy (:plushy best)
|
||||
:best-program (genome/plushy->push (:plushy best) argmap)
|
||||
:best-total-error (:total-error best)
|
||||
:evaluations evaluations
|
||||
:ds-indices (map #(:index %) training-data)
|
||||
:best-errors (:errors best)
|
||||
:best-behaviors (:behaviors best)
|
||||
:genotypic-diversity (float (/ (count (distinct (map :plushy pop))) (count pop)))
|
||||
@ -35,12 +36,13 @@
|
||||
(defn gp
|
||||
"Main GP loop."
|
||||
[{:keys [population-size max-generations error-function instructions
|
||||
max-initial-plushy-size solution-error-threshold mapper ds-parent-rate ds-parent-gens dont-end ids-type]
|
||||
max-initial-plushy-size solution-error-threshold mapper ds-parent-rate ds-parent-gens dont-end ids-type downsample?]
|
||||
:or {solution-error-threshold 0.0
|
||||
dont-end false
|
||||
ds-parent-rate 0
|
||||
ds-parent-gens 1
|
||||
ids-type :solved ; :solved or :elite
|
||||
downsample? false
|
||||
;; The `mapper` will perform a `map`-like operation to apply a function to every individual
|
||||
;; in the population. The default is `map` but other options include `mapv`, or `pmap`.
|
||||
mapper #?(:clj pmap :cljs map)}
|
||||
@ -55,12 +57,12 @@
|
||||
(fn [_] {:plushy (genome/make-random-plushy instructions max-initial-plushy-size)})
|
||||
(range population-size))
|
||||
indexed-training-data (downsample/assign-indices-to-data (downsample/initialize-case-distances argmap))]
|
||||
(let [training-data (if (= (:parent-selection argmap) :ds-lexicase)
|
||||
(let [training-data (if downsample?
|
||||
(case (:ds-function argmap)
|
||||
:case-avg (downsample/select-downsample-avg indexed-training-data argmap)
|
||||
:case-maxmin (downsample/select-downsample-maxmin indexed-training-data argmap)
|
||||
:case-maxmin-auto (downsample/select-downsample-maxmin-adaptive indexed-training-data argmap)
|
||||
(downsample/select-downsample-random indexed-training-data argmap))
|
||||
:case-rand (downsample/select-downsample-random indexed-training-data argmap)
|
||||
(do (prn {:error "Invalid Downsample Function"}) (downsample/select-downsample-random indexed-training-data argmap)))
|
||||
indexed-training-data) ;defaults to random
|
||||
parent-reps (if (zero? (mod generation ds-parent-gens)) ;every ds-parent-gens generations
|
||||
(take (* ds-parent-rate (count population)) (shuffle population))
|
||||
@ -74,21 +76,17 @@
|
||||
(partial error-function argmap training-data)
|
||||
population))
|
||||
best-individual (first ds-evaluated-pop)
|
||||
best-individual-passes-ds (and (= (:parent-selection argmap) :ds-lexicase) (<= (:total-error best-individual) solution-error-threshold))]
|
||||
(prn {:ds-indices-list (map #(:index %) training-data)})
|
||||
;(if (sequential? (:input1 (first training-data)))
|
||||
;(prn {:ds-inputs (map #(first (:input1 %)) training-data)})
|
||||
;(prn {:ds-inputs (map #(:input1 %) training-data)}))
|
||||
best-individual-passes-ds (and downsample? (<= (:total-error best-individual) solution-error-threshold))]
|
||||
(if (:custom-report argmap)
|
||||
((:custom-report argmap) evaluations ds-evaluated-pop generation argmap)
|
||||
(report evaluations ds-evaluated-pop generation argmap))
|
||||
(report evaluations ds-evaluated-pop generation argmap training-data))
|
||||
;;did the indvidual pass all cases in ds?
|
||||
(when best-individual-passes-ds
|
||||
(prn {:semi-success-generation generation}))
|
||||
(cond
|
||||
;; Success on training cases is verified on testing cases
|
||||
(if (or (and best-individual-passes-ds (<= (:total-error (error-function argmap indexed-training-data best-individual)) solution-error-threshold))
|
||||
(and (not= (:parent-selection argmap) :ds-lexicase)
|
||||
(and (not downsample?)
|
||||
(<= (:total-error best-individual) solution-error-threshold)))
|
||||
(do (prn {:success-generation generation})
|
||||
(prn {:total-test-error
|
||||
@ -100,10 +98,10 @@
|
||||
false)
|
||||
nil
|
||||
;;
|
||||
(and (not= (:ds-function argmap) :case-maxmin-auto) (>= generation max-generations))
|
||||
(and (not downsample?) (>= generation max-generations))
|
||||
nil
|
||||
;;
|
||||
(and (= (:ds-function argmap) :case-maxmin-auto) (>= evaluations (* max-generations population-size (count indexed-training-data))))
|
||||
(and downsample? (>= evaluations (* max-generations population-size (count indexed-training-data))))
|
||||
nil
|
||||
;;
|
||||
:else (recur (inc generation)
|
||||
@ -117,8 +115,8 @@
|
||||
(first reindexed-pop)))
|
||||
(hyperselection/log-hyperselection-and-ret (repeatedly population-size ;need to count occurance of each parent, and reset IDs
|
||||
#(variation/new-individual reindexed-pop argmap)))))
|
||||
(if (= (:parent-selection argmap) :ds-lexicase)
|
||||
(if (zero? (mod generation ds-parent-gens))
|
||||
(downsample/update-case-distances rep-evaluated-pop indexed-training-data indexed-training-data ids-type) ; update distances every ds-parent-gens generations
|
||||
indexed-training-data)
|
||||
(if downsample?
|
||||
(if (zero? (mod generation ds-parent-gens))
|
||||
(downsample/update-case-distances rep-evaluated-pop indexed-training-data indexed-training-data ids-type) ; update distances every ds-parent-gens generations
|
||||
indexed-training-data)
|
||||
indexed-training-data))))))
|
@ -88,11 +88,13 @@
|
||||
:case-t-size (count (:train train-and-test-data))
|
||||
:ds-parent-rate 0
|
||||
:ds-parent-gens 1
|
||||
:ds-function :case-rand
|
||||
:max-generations 500
|
||||
:population-size 500
|
||||
:max-initial-plushy-size 100
|
||||
:step-limit 200
|
||||
:parent-selection :lexicase
|
||||
:downsample? false
|
||||
:tournament-size 5
|
||||
:umad-rate 0.1
|
||||
:variation {:umad 1.0 :crossover 0.0}
|
||||
|
@ -26,5 +26,4 @@
|
||||
[pop argmap]
|
||||
(case (:parent-selection argmap)
|
||||
:tournament (tournament-selection pop argmap)
|
||||
:lexicase (lexicase-selection pop argmap)
|
||||
:ds-lexicase (lexicase-selection pop argmap)))
|
||||
:lexicase (lexicase-selection pop argmap)))
|
||||
|
Loading…
x
Reference in New Issue
Block a user