Finish polymorphic and vector instructions

This commit is contained in:
mcgirjau 2020-06-29 19:19:55 -04:00
parent 66856cf99f
commit 7184cd6644
24 changed files with 751 additions and 211 deletions

7
.idea/codeStyles/Project.xml generated Normal file
View File

@ -0,0 +1,7 @@
<component name="ProjectCodeStyleConfiguration">
<code_scheme name="Project" version="173">
<ScalaCodeStyleSettings>
<option name="MULTILINE_STRING_CLOSING_QUOTES_ON_NEW_LINE" value="true" />
</ScalaCodeStyleSettings>
</code_scheme>
</component>

5
.idea/codeStyles/codeStyleConfig.xml generated Normal file
View File

@ -0,0 +1,5 @@
<component name="ProjectCodeStyleConfiguration">
<state>
<option name="PREFERRED_PROJECT_CODE_STYLE" value="Default" />
</state>
</component>

View File

@ -2,7 +2,8 @@
:description "FIXME: write description"
:url "http://example.com/FIXME"
:license {:name "EPL-2.0 OR GPL-2.0-or-later WITH Classpath-exception-2.0"
:url "https://www.eclipse.org/legal/epl-2.0/"}
:dependencies [[org.clojure/clojure "1.10.0"]]
:url "https://www.eclipse.org/legal/epl-2.0/"}
:dependencies [[org.clojure/clojure "1.10.0"]
[org.clojure/clojurescript "1.9.946"]]
:main ^:skip-aot propeller.core
:repl-options {:init-ns propeller.core})

5
propeller-cli Executable file
View File

@ -0,0 +1,5 @@
#!/usr/bin/env bash
# Bash script utility for running propeller for people unfamiliar with Clojure

View File

@ -2,8 +2,7 @@
(:gen-class)
(:require [propeller.gp :as gp]
[propeller.problems.simple-regression :as regression]
[propeller.problems.string-classification :as string-classif]
[propeller.push.core :as push]))
[propeller.problems.string-classification :as string-classif]))
(defn -main
"Runs propel-gp, giving it a map of arguments."
@ -11,7 +10,7 @@
(gp/gp
(update-in
(merge
{:instructions push/default-instructions
{:instructions regression/instructions
:error-function regression/error-function
:max-generations 500
:population-size 500
@ -25,4 +24,4 @@
(apply hash-map
(map read-string args)))
[:error-function]
#(if (fn? %) % (eval %)))))
identity)))

View File

@ -1,5 +1,13 @@
(ns propeller.genome
(:require [propeller.push.core :as push]))
(:require [propeller.push.core :as push]
[propeller.utils :as utils]))
(defn make-random-plushy
"Creates and returns a new plushy."
[instructions max-initial-plushy-size]
(repeatedly
(rand-int max-initial-plushy-size)
#(utils/random-instruction instructions)))
(defn plushy->push
"Returns the Push program expressed by the given plushy representation."
@ -25,9 +33,3 @@
(rest plushy))
(recur push (rest plushy))) ;; unmatched close, ignore
(recur (concat push [i]) (rest plushy)))))))) ;; anything else
(defn make-random-plushy
"Creates and returns a new plushy."
[instructions max-initial-plushy-size]
(repeatedly (rand-int max-initial-plushy-size)
#(rand-nth instructions)))

View File

@ -7,8 +7,10 @@
[propeller.push.instructions.code]
[propeller.push.instructions.input-output]
[propeller.push.instructions.numeric]
[propeller.push.instructions.random]
[propeller.push.instructions.polymorphic]
[propeller.push.instructions.string]))
[propeller.push.instructions.string]
[propeller.push.instructions.vector]))
(defn report
"Reports information each generation."
@ -36,15 +38,12 @@
;;
(println "Starting GP with args: " argmap)
;;
(do (println "Registered instructions:")
(println (sort (keys @push/instruction-table))))
;;
(loop [generation 0
population (repeatedly
population-size
#(hash-map :plushy
(genome/make-random-plushy instructions
max-initial-plushy-size)))]
#(hash-map :plushy (genome/make-random-plushy
instructions
max-initial-plushy-size)))]
(let [evaluated-pop (sort-by :total-error
(map (partial error-function argmap)
population))]

View File

@ -18,6 +18,39 @@
[x]
(+ (* x x x) x 3))
;; Set of original propel instructions
(def instructions
(list :in1
:integer_add
:integer_subtract
:integer_mult
:integer_quot
:integer_eq
:exec_dup
:exec_if
:boolean_and
:boolean_or
:boolean_not
:boolean_eq
:string_eq
:string_take
:string_drop
:string_reverse
:string_concat
:string_length
:string_includes?
'close
0
1
true
false
""
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"A"
"C"
"G"
"T"))
(defn error-function
"Finds the behaviors and errors of an individual. The error is the absolute
deviation between the target output value and the program's selected behavior,

View File

@ -7,6 +7,39 @@
;; String classification
;; =============================================================================
;; Set of original propel instructions
(def instructions
(list :in1
:integer_add
:integer_subtract
:integer_mult
:integer_quot
:integer_eq
:exec_dup
:exec_if
:boolean_and
:boolean_or
:boolean_not
:boolean_eq
:string_eq
:string_take
:string_drop
:string_reverse
:string_concat
:string_length
:string_includes?
'close
0
1
true
false
""
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"A"
"C"
"G"
"T"))
(defn error-function
"Finds the behaviors and errors of an individual: Error is 0 if the value and
the program's selected behavior match, or 1 if they differ, or 1000000 if no

View File

@ -13,39 +13,6 @@
(def instruction-table (atom (hash-map)))
;; Set of original propel instructions
(def default-instructions
(list :in1
:integer_add
:integer_subtract
:integer_mult
:integer_quot
:integer_eq
:exec_dup
:exec_if
:boolean_and
:boolean_or
:boolean_not
:boolean_eq
:string_eq
:string_take
:string_drop
:string_reverse
:string_concat
:string_length
:string_includes?
'close
0
1
true
false
""
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"A"
"C"
"G"
"T"))
;; Number of blocks opened by instructions (default = 0)
(def opens {:exec_dup 1
:exec_if 2})

View File

@ -9,24 +9,28 @@
;; Pushes the logical AND of the top two BOOLEANs
(def-instruction
:boolean_and
^{:stacks #{:boolean}}
(fn [state]
(make-instruction state #(and %1 %2) [:boolean :boolean] :boolean)))
;; Pushes the logical OR of the top two BOOLEANs
(def-instruction
:boolean_or
^{:stacks #{:boolean}}
(fn [state]
(make-instruction state #(or %1 %2) [:boolean :boolean] :boolean)))
;; Pushes the logical NOT of the top BOOLEAN
(def-instruction
:boolean_not
^{:stacks #{:boolean}}
(fn [state]
(make-instruction state not [:boolean] :boolean)))
;; Pushes the logical XOR of the top two BOOLEAN
(def-instruction
:boolean_xor
^{:stacks #{:boolean}}
(fn [state]
(make-instruction state #(or (and %1 (not %2))
(and (not %1) %2))
@ -37,6 +41,7 @@
;; first one
(def-instruction
:boolean_invert_first_then_and
^{:stacks #{:boolean}}
(fn [state]
(make-instruction state #(and %1 (not %2)) [:boolean :boolean] :boolean)))
@ -44,17 +49,20 @@
;; second one
(def-instruction
:boolean_invert_second_then_and
^{:stacks #{:boolean}}
(fn [state]
(make-instruction state #(and (not %1) %2) [:boolean :boolean] :boolean)))
;; Pushes FALSE if the top FLOAT is 0.0, and TRUE otherwise
(def-instruction
:boolean_fromfloat
^{:stacks #{:boolean :float}}
(fn [state]
(make-instruction state #(not (zero? %)) [:float] :boolean)))
;; Pushes FALSE if the top INTEGER is 0, and TRUE otherwise
(def-instruction
:boolean_frominteger
^{:stacks #{:boolean :integer}}
(fn [state]
(make-instruction state #(not (zero? %)) [:integer] :boolean)))

View File

@ -1,5 +1,6 @@
(ns propeller.push.instructions.char
(:require [propeller.push.utils :refer [def-instruction
(:require [propeller.push.state :as state]
[propeller.push.utils :refer [def-instruction
make-instruction]]
[propeller.tools.character :as char]))
@ -10,12 +11,14 @@
;; Pushes TRUE onto the BOOLEAN stack if the popped character is a letter
(def-instruction
:char_isletter
^{:stacks #{:boolean :char}}
(fn [state]
(make-instruction state char/is-letter [:char] :boolean)))
;; Pushes TRUE onto the BOOLEAN stack if the popped character is a digit
(def-instruction
:char_isdigit
^{:stacks #{:boolean :char}}
(fn [state]
(make-instruction state char/is-digit [:char] :boolean)))
@ -23,6 +26,7 @@
;; (newline, space, or tab)
(def-instruction
:char_iswhitespace
^{:stacks #{:boolean :char}}
(fn [state]
(make-instruction state char/is-whitespace [:char] :boolean)))
@ -32,6 +36,7 @@
;; pushed.
(def-instruction
:char_fromfloat
^{:stacks #{:char :float}}
(fn [state]
(make-instruction state #(char (mod (long %) 128)) [:float] :char)))
@ -40,13 +45,19 @@
;; 128. For instance, 248 will result in x being pushed
(def-instruction
:char_frominteger
^{:stacks #{:char :integer}}
(fn [state]
(make-instruction state #(char (mod % 128)) [:integer] :char)))
;; Pops the STRING stack and pushes the top element's constituent characters
;; onto the CHAR stack, in order. For instance, "hello" will result in the
;; top of the CHAR stack being o l l e h
;; top of the CHAR stack being \h \e \l \l \o
(def-instruction
:char_allfromstring
^{:stacks #{:char :string}}
(fn [state]
(make-instruction state #(map char %) [:string] :char)))
(if (state/empty-stack? state :string)
state
(let [top-string (state/peek-stack state :string)
popped-state (state/pop-stack state :string)]
(state/push-to-stack-multiple popped-state :char (map char top-string))))))

View File

@ -1,14 +1,101 @@
(ns propeller.push.instructions.code
(:require [propeller.push.state :as state]
(:require [propeller.utils :as utils]
[propeller.push.state :as state]
[propeller.push.utils :refer [def-instruction
generate-instructions
make-instruction]]))
;; =============================================================================
;; CODE and EXEC Instructions
;; Polymorphic Instructions
;; =============================================================================
(def _noop
^{:stacks #{}}
(fn [stack state] state))
(def _do*range
^{:stacks #{:exec :integer}}
(fn [stack state] state))
(def _noop
^{:stacks #{}}
(fn [stack state] state))
(def _noop
^{:stacks #{}}
(fn [stack state] state))
(generate-instructions
[:exec :code]
[_noop])
;; =============================================================================
;; CODE Instructions
;; =============================================================================
;; Concatenates the top two instructions on the :code stack and pushes the
;; result back onto the stack
(def-instruction
:code_append
^{:stacks #{:code}}
(fn [state]
(make-instruction state
#(utils/not-lazy
(concat (utils/ensure-list %2)
(utils/ensure-list %1)))
[:code :code]
:code)))
(def-instruction
:code_atom
^{:stacks #{:code}}
(fn [state]
()))
(def-instruction
:code_car
^{:stacks #{:code}}
(fn [state]
()))
(def-instruction
:code_cdr
^{:stacks #{:code}}
(fn [state]
()))
(def-instruction
:code_cons
^{:stacks #{:code}}
(fn [state]
()))
(def-instruction
:code_do
^{:stacks #{:code}}
(fn [state]
()))
(def-instruction
:code_do*
^{:stacks #{:code}}
(fn [state]
()))
(def-instruction
:code_append
^{:stacks #{:code}}
(fn [state]
()))
;; =============================================================================
;; EXEC Instructions
;; =============================================================================
(def-instruction
:exec_dup
^{:stacks #{:exec}}
(fn [state]
(if (state/empty-stack? state :exec)
state
@ -16,5 +103,6 @@
(def-instruction
:exec_if
^{:stacks #{:boolean :exec}}
(fn [state]
(make-instruction state #(if %1 %3 %2) [:boolean :exec :exec] :exec)))

View File

@ -1,6 +1,6 @@
(ns propeller.push.instructions.numeric
(:require [propeller.push.utils :refer [def-instruction
generate-functions
generate-instructions
make-instruction]]
[propeller.tools.math :as math]))
@ -10,103 +10,119 @@
;; Pushes TRUE onto the BOOLEAN stack if the second item is greater than the top
;; item, and FALSE otherwise
(defn- _gt
[stack state]
(make-instruction state > [stack stack] :boolean))
(def _gt
^{:stacks #{:boolean}}
(fn [stack state]
(make-instruction state > [stack stack] :boolean)))
;; Pushes TRUE onto the BOOLEAN stack if the second item is greater than or
;; equal to the top item, and FALSE otherwise
(defn- _gte
[stack state]
(make-instruction state >= [stack stack] :boolean))
(def _gte
^{:stacks #{:boolean}}
(fn [stack state]
(make-instruction state >= [stack stack] :boolean)))
;; Pushes TRUE onto the BOOLEAN stack if the second item is less than the top
;; item, and FALSE otherwise
(defn- _lt
[stack state]
(make-instruction state < [stack stack] :boolean))
(def _lt
^{:stacks #{:boolean}}
(fn [stack state]
(make-instruction state < [stack stack] :boolean)))
;; Pushes TRUE onto the BOOLEAN stack if the second item is less than or equal
;; to the top item, and FALSE otherwise
(defn- _lte
[stack state]
(make-instruction state <= [stack stack] :boolean))
(def _lte
^{:stacks #{:boolean}}
(fn [stack state]
(make-instruction state <= [stack stack] :boolean)))
;; Pushes the sum of the top two items onto the same stack
(defn- _add
[stack state]
(make-instruction state +' [stack stack] stack))
(def _add
^{:stacks #{}}
(fn [stack state]
(make-instruction state +' [stack stack] stack)))
;; Pushes the difference of the top two items (i.e. the second item minus the
;; top item) onto the same stack
(defn- _subtract
[stack state]
(make-instruction state -' [stack stack] stack))
(def _subtract
^{:stacks #{}}
(fn [stack state]
(make-instruction state -' [stack stack] stack)))
;; Pushes the product of the top two items onto the same stack
(defn- _mult
[stack state]
(make-instruction state *' [stack stack] stack))
(def _mult
^{:stacks #{}}
(fn [stack state]
(make-instruction state *' [stack stack] stack)))
;; Pushes the quotient of the top two items (i.e. the second item divided by the
;; top item) onto the same stack. If the top item is zero, pushes 1
(defn- _quot
[stack state]
(make-instruction state #(if (zero? %2) 1 (quot %1 %2)) [stack stack] stack))
(def _quot
^{:stacks #{}}
(fn [stack state]
(make-instruction state #(if (zero? %2) 1 (quot %1 %2)) [stack stack] stack)))
;; Pushes the second item modulo the top item onto the same stack. If the top
;; item is zero, pushes 1. The modulus is computed as the remainder of the
;; quotient, where the quotient has first been truncated towards negative
;; infinity.
(defn- _mod
[stack state]
(make-instruction state #(if (zero? %2) 1 (mod %1 %2)) [stack stack] stack))
(def _mod
^{:stacks #{}}
(fn [stack state]
(make-instruction state #(if (zero? %2) 1 (mod %1 %2)) [stack stack] stack)))
;; Pushes the maximum of the top two items
(defn- _max
[stack state]
(make-instruction state max [stack stack] stack))
(def _max
^{:stacks #{}}
(fn [stack state]
(make-instruction state max [stack stack] stack)))
;; Pushes the minimum of the top two items
(defn- _min
[stack state]
(make-instruction state min [stack stack] stack))
(def _min
^{:stacks #{}}
(fn [stack state]
(make-instruction state min [stack stack] stack)))
;; Pushes 1 / 1.0 if the top BOOLEAN is TRUE, or 0 / 0.0 if FALSE
(defn- _fromboolean
[stack state]
(make-instruction state
#((if (= stack :integer) int float) (if % 1 0))
[:boolean]
stack))
(def _fromboolean
^{:stacks #{:boolean}}
(fn [stack state]
(make-instruction state
#((if (= stack :integer) int float) (if % 1 0))
[:boolean]
stack)))
;; Pushes the ASCII value of the top CHAR
(defn- _fromchar
[stack state]
(make-instruction state (if (= stack :integer) int float) [:char] stack))
(def _fromchar
^{:stacks #{:char}}
(fn [stack state]
(make-instruction state (if (= stack :integer) int float) [:char] stack)))
;; Pushes the value of the top STRING, if it can be parsed as a number.
;; Otherwise, acts as a NOOP
(defn- _fromstring
[stack state]
(make-instruction state
#(try ((if (= stack :integer) int float) (read-string %))
(catch Exception e))
[:string]
stack))
(def _fromstring
^{:stacks #{:string}}
(fn [stack state]
(make-instruction state
#(try ((if (= stack :integer) int float) (read-string %))
(catch Exception e))
[:string]
stack)))
;; Pushes the increment (i.e. +1) of the top item of the stack
(defn- _inc
[stack state]
(make-instruction state inc [stack] stack))
(def _inc
^{:stacks #{}}
(fn [stack state]
(make-instruction state inc [stack] stack)))
;; Pushes the decrement (i.e. -1) of the top item of the stack
(defn- _dec
[stack state]
(make-instruction state dec [stack] stack))
(def _dec
^{:stacks #{}}
(fn [stack state]
(make-instruction state dec [stack] stack)))
;; 2 types x 16 functions = 32 instructions
(generate-functions
(generate-instructions
[:float :integer]
[_gt _gte _lt _lte _add _subtract _mult _quot _mod _max _min _inc _dec
_fromboolean _fromchar _fromstring])
@ -118,24 +134,28 @@
;; Pushes the cosine of the top FLOAT
(def-instruction
:float_cos
^{:stacks #{:float}}
(fn [state]
(make-instruction state math/cos [:float] :float)))
;; Pushes the sine of the top FLOAT
(def-instruction
:float_sin
^{:stacks #{:float}}
(fn [state]
(make-instruction state math/sin [:float] :float)))
;; Pushes the tangent of the top FLOAT
(def-instruction
:float_tan
^{:stacks #{:float}}
(fn [state]
(make-instruction state math/tan [:float] :float)))
;; Pushes the floating point version of the top INTEGER
(def-instruction
:float_frominteger
^{:stacks #{:float :integer}}
(fn [state]
(make-instruction state float [:integer] :float)))
@ -146,5 +166,6 @@
;; Pushes the result of truncating the top FLOAT towards negative infinity
(def-instruction
:integer_fromfloat
^{:stacks #{:float :integer}}
(fn [state]
(make-instruction state int [:float] :integer)))

View File

@ -1,107 +1,181 @@
(ns propeller.push.instructions.polymorphic
(:require [propeller.push.state :as state]
[propeller.push.utils :refer [def-instruction
generate-functions
make-instruction]]))
(:require [propeller.utils :as utils]
[propeller.push.state :as state]
[propeller.push.utils :refer [generate-instructions
make-instruction]]))
;; =============================================================================
;; Polymorphic Instructions
;;
;; (for all types, with the exception of non-data stacks like auxiliary, tag,
;; input, and output)
;; (for all stacks, with the exception of non-data ones like auxiliary, input,
;; and output)
;; =============================================================================
;; Pushes TRUE onto the BOOLEAN stack if the top two items are equal.
;; Otherwise FALSE
(defn- _eq
[stack state]
(make-instruction state = [stack stack] :boolean))
;; Duplicates the top item of the stack. Does not pop its argument (since that
;; would negate the effect of the duplication)
(defn- _dup
[stack state]
(let [top-item (state/peek-stack state stack)]
(if (state/empty-stack? state stack)
state
(state/push-to-stack state stack top-item))))
(def _dup
^{:stacks #{}}
(fn [stack state]
(let [top-item (state/peek-stack state stack)]
(if (state/empty-stack? state stack)
state
(state/push-to-stack state stack top-item)))))
;; Duplicates n copies of the top item (i.e leaves n copies there). Does not pop
;; its argument (since that would negate the effect of the duplication). The
;; number n is determined by the top INTEGER. For n = 0, equivalent to POP.
;; For n = 1, equivalent to NOOP. For n = 2, equivalent to DUP. Negative values
;; of n are treated as 0.
(defn- _duptimes
[stack state]
(if (or (and (= stack :integer)
(>= (count (:integer state)) 2))
(and (not= stack :integer)
(not (state/empty-stack? state :integer))
(not (state/empty-stack? state stack))))
(let [n (state/peek-stack state :integer)
item-to-duplicate (state/peek-stack state stack)]
nil)
state))
;; of n are treated as 0
(def _duptimes
^{:stacks #{:integer}}
(fn [stack state]
(if (or (and (= stack :integer)
(<= 2 (count (:integer state))))
(and (not= stack :integer)
(not (state/empty-stack? state :integer))
(not (state/empty-stack? state stack))))
(let [n (state/peek-stack state :integer)
popped-state (state/pop-stack state :integer)
top-item (state/peek-stack popped-state stack)
top-item-dup (take (- n 1) (repeat top-item))]
(cond
(< 0 n) (state/push-to-stack-multiple popped-state stack top-item-dup)
:else (state/pop-stack popped-state stack)))
state)))
(defn- _dupitems
[stack state]
())
;; Duplicates the top n items on the stack, one time each. The number n is
;; determined by the top INTEGER. If n <= 0, no items will be duplicated. If
;; fewer than n items are on the stack, the entire stack will be duplicated.
(def _dupitems
^{:stacks #{:integer}}
(fn [stack state]
(if (state/empty-stack? state :integer)
state
(let [n (state/peek-stack state :integer)
popped-state (state/pop-stack state :integer)
top-items (take n (get popped-state stack))]
(state/push-to-stack-multiple popped-state stack top-items)))))
;; Pushes TRUE onto the BOOLEAN stack if the stack is empty. Otherwise FALSE
(defn- _empty
[stack state]
(state/push-to-stack state :boolean (state/empty-stack? state stack)))
(def _empty
^{:stacks #{:boolean}}
(fn [stack state]
(state/push-to-stack state :boolean (state/empty-stack? state stack))))
;; Pushes TRUE onto the BOOLEAN stack if the top two items are equal.
;; Otherwise FALSE
(def _eq
^{:stacks #{:boolean}}
(fn [stack state]
(make-instruction state = [stack stack] :boolean)))
;; Empties the given stack
(defn- _flush
[stack state]
())
(def _flush
^{:stacks #{}}
(fn [stack state]
(assoc state stack '())))
;; Pops the given stack
(defn- _pop
[stack state]
(state/pop-stack state stack))
(def _pop
^{:stacks #{}}
(fn [stack state]
(state/pop-stack state stack)))
;; Rotates the top three items on the stack (i.e. pulls the third item out and
;; pushes it on top). Equivalent to (yank state stack-type 2)
(defn- _rot
[stack state]
())
(def _rot
^{:stacks #{}}
(fn [stack state]
(if (<= 3 (count (get state stack)))
(let [top-three (state/peek-stack-multiple state stack 3)
popped-state (state/pop-stack-multiple state stack 3)
top-three-rot (take 3 (conj top-three (last top-three)))]
(state/push-to-stack-multiple popped-state stack top-three-rot))
state)))
;; Inserts the top item deeper into the stack, using the top INTEGER to
;; determine how deep
(defn- _shove
[stack state]
())
(def _shove
^{:stacks #{:integer}}
(fn [stack state]
(if (or (and (= stack :integer)
(<= 2 (count (:integer state))))
(and (not= stack :integer)
(not (state/empty-stack? state :integer))
(not (state/empty-stack? state stack))))
(let [index-raw (state/peek-stack state :integer)
popped-state (state/pop-stack state :integer)
top-item (state/peek-stack popped-state stack)
popped-state (state/pop-stack popped-state stack)
index (max 0 (min index-raw (count (get popped-state stack))))]
(update popped-state stack #(utils/not-lazy (concat (take index %)
(list top-item)
(drop index %)))))
state)))
;; Pushes the given stack's depth onto the INTEGER stack
(defn- _stackdepth
[stack state]
())
(def _stackdepth
^{:stacks #{:integer}}
(fn [stack state]
(let [stack-depth (count (get state stack))]
(state/push-to-stack state :integer stack-depth))))
;; Swaps the top two items on the stack
(defn- _swap
[stack state]
())
(def _swap
^{:stacks #{}}
(fn [stack state]
(if (<= 2 (count (get state stack)))
(let [top-two (state/peek-stack-multiple state stack 2)
popped-state (state/pop-stack-multiple state stack 2)]
(state/push-to-stack-multiple popped-state stack (reverse top-two)))
state)))
;; Removes an indexed item from deep in the stack. The top INTEGER is used to
;; determine how deep to yank from
(defn- _yank
[stack state]
())
;; Pushes an indexed item from deep in the stack, removing it. The top INTEGER
;; is used to determine how deep to yank from
(def _yank
^{:stacks #{:integer}}
(fn [stack state]
(if (or (and (= stack :integer)
(<= 2 (count (:integer state))))
(and (not= stack :integer)
(not (state/empty-stack? state :integer))
(not (state/empty-stack? state stack))))
(let [index-raw (state/peek-stack state :integer)
popped-state (state/pop-stack state :integer)
index (max 0 (min index-raw (count (get popped-state stack))))
indexed-item (nth (get popped-state stack) index)]
(update popped-state stack #(utils/not-lazy
(concat (list indexed-item)
(take index %)
(rest (drop index %))))))
state)))
;; Pushes a copy of an indexed item deep in the stack, without removing it.
;; Pushes a copy of an indexed item from deep in the stack, without removing it.
;; The top INTEGER is used to determine how deep to yankdup from
(defn- _yankdup
[stack state]
())
(def _yankdup
^{:stacks #{:integer}}
(fn [stack state]
(if (or (and (= stack :integer)
(<= 2 (count (:integer state))))
(and (not= stack :integer)
(not (state/empty-stack? state :integer))
(not (state/empty-stack? state stack))))
(let [index-raw (state/peek-stack state :integer)
popped-state (state/pop-stack state :integer)
index (max 0 (min index-raw (count (get popped-state stack))))
indexed-item (nth (get popped-state stack) index)]
(state/push-to-stack popped-state stack indexed-item))
state)))
;; 5 types x 1 function = 5 instructions
(generate-functions [:boolean :char :float :integer :string] [_eq])
;; 9 types x 1 functions = 9 instructions
(generate-instructions
[:boolean :char :float :integer :string
:vector_boolean :vector_float :vector_integer :vector_string]
[_eq])
;; 7 types x 12 function = 84 instructions
(generate-functions
[:boolean :char :code :exec :float :integer :string]
;; 11 types x 12 functions = 132 instructions
(generate-instructions
[:boolean :char :code :exec :float :integer :string
:vector_boolean :vector_float :vector_integer :vector_string]
[_dup _duptimes _dupitems _empty _flush _pop _rot _shove _stackdepth
_swap _yank _yankdup])

View File

@ -0,0 +1,4 @@
(ns propeller.push.instructions.random
(:require [propeller.push.utils :refer [def-instruction]]))

View File

@ -8,35 +8,42 @@
(def-instruction
:string_=
^{:stacks #{:boolean :string}}
(fn [state]
(make-instruction state = [:string :string] :boolean)))
(def-instruction
:string_concat
^{:stacks #{:string}}
(fn [state]
(make-instruction state #(apply str (concat %1 %2)) [:string :string] :string)))
(def-instruction
:string_drop
^{:stacks #{:integer :string}}
(fn [state]
(make-instruction state #(apply str (drop %1 %2)) [:integer :string] :string)))
(def-instruction
:string_includes?
^{:stacks #{:boolean :string}}
(fn [state]
(make-instruction state clojure.string/includes? [:string :string] :boolean)))
(def-instruction
:string_length
^{:stacks #{:integer :string}}
(fn [state]
(make-instruction state count [:string] :integer)))
(def-instruction
:string_reverse
^{:stacks #{:string}}
(fn [state]
(make-instruction state #(apply str (reverse %)) [:string] :string)))
(def-instruction
:string_take
^{:stacks #{:integer :string}}
(fn [state]
(make-instruction state #(apply str (take %1 %2)) [:integer :string] :string)))

View File

@ -0,0 +1,204 @@
(ns propeller.push.instructions.vector
(:require [clojure.string]
[propeller.utils :as utils]
[propeller.push.state :as state]
[propeller.push.utils :refer [def-instruction
generate-instructions
make-instruction]]))
;; =============================================================================
;; VECTOR Instructions
;; =============================================================================
;; Pushes the butlast of the top item
(def _butlast
^{:stacks #{}}
(fn [stack state]
(make-instruction state #(vec (butlast %)) [stack] stack)))
;; Concats and pushes the top two vectors of the stack
(def _concat
^{:stacks #{}}
(fn [stack state]
(make-instruction state #(vec (concat %2 %1)) [stack stack] stack)))
;; Conj's the top item of the appropriately-typed literal stack onto the vector
;; stack (e.g. pop the top INTEGER and conj it onto the top VECTOR_INTEGER)
(def _conj
^{:stacks #{}}
(fn [stack state]
(let [lit-stack (utils/get-vector-literal-type stack)]
(make-instruction state #(conj %2 %1) [lit-stack stack] stack))))
;; Pushes TRUE onto the BOOLEAN stack if the top element of the vector stack
;; contains the top element of the appropriately-typed literal stack. Otherwise,
;; pushes FALSE
(def _contains
^{:stacks #{:boolean}}
(fn [stack state]
(let [lit-stack (utils/get-vector-literal-type stack)]
(make-instruction state #(contains? (set %2) %1) [lit-stack stack] :boolean))))
;; Pushes TRUE onto the BOOLEAN stack if the top element is an empty vector.
;; Otherwise, pushes FALSE
(def _emptyvector
^{:stacks #{:boolean}}
(fn [stack state]
(make-instruction state empty? [stack] :boolean)))
;; Pushes the first item of the top element of the vector stack onto the
;; approrpiately-typed literal stack
(def _first
^{:stacks #{}}
(fn [stack state]
(let [lit-stack (utils/get-vector-literal-type stack)]
(make-instruction state first [stack] lit-stack))))
;; Pushes onto the INTEGER stack the index of the top element of the
;; appropriately-typed literal stack within the top element of the vector stack
(def _indexof
^{:stacks #{:integer}}
(fn [stack state]
(let [lit-stack (utils/get-vector-literal-type stack)]
(make-instruction state #(utils/indexof %1 %2) [lit-stack stack] :integer))))
;; Pushes the last item of the top element of the vector stack onto the
;; approrpiately-typed literal stack
(def _last
^{:stacks #{}}
(fn [stack state]
(let [lit-stack (utils/get-vector-literal-type stack)]
(make-instruction state last [stack] lit-stack))))
;; Pushes the length of the top item onto the INTEGER stack
(def _length
^{:stacks #{:integer}}
(fn [stack state]
(make-instruction state count [stack] :integer)))
;; Pushes the Nth item of the top element of the vector stack onto the
;; approrpiately-typed literal stack, where N is taken from the INTEGER stack.
;; To insure the index is within bounds, N is taken mod the vector length
(def _nth
^{:stacks #{:integer}}
(fn [stack state]
(let [lit-stack (utils/get-vector-literal-type stack)]
(make-instruction state
#(get %2 (mod %1 (count %2)))
[:integer stack]
lit-stack))))
;; Pushes onto the INTEGER stack the number of occurrences of the top element of
;; the appropriately-typed literal stack within the top element of the vector
;; stack
(def _occurrencesof
^{:stacks #{:integer}}
(fn [stack state]
(let [lit-stack (utils/get-vector-literal-type stack)]
(make-instruction state
(fn [lit vect] (count (filter #(= lit %) vect)))
[lit-stack stack]
:integer))))
;; Pushes every item of the top element onto the appropriately-typed stack
(def _pushall
^{:stacks #{}}
(fn [stack state]
(if (state/empty-stack? state stack)
state
(let [lit-stack (utils/get-vector-literal-type stack)
top-vector (state/peek-stack state stack)
popped-state (state/pop-stack state stack)]
(state/push-to-stack-multiple popped-state lit-stack top-vector)))))
;; Removes all occurrences of the top element of the appropriately-typed literal
;; stack from the first element of the vector stack
(def _remove
^{:stacks #{}}
(fn [stack state]
(let [lit-stack (utils/get-vector-literal-type stack)]
(make-instruction state
(fn [lit vect] (vec (filter #(not= lit %) vect)))
[lit-stack stack]
stack))))
;; Replaces all occurrences of the second element of the appropriately-typed
;; literal stack with the top element of the appropriately-typed literal stack
;; within the top item of the vector stack
(def _replace
^{:stacks #{}}
(fn [stack state]
(let [lit-stack (utils/get-vector-literal-type stack)]
(make-instruction state
(fn [lit1 lit2 vect]
(replace {lit1 lit2} vect))
[lit-stack lit-stack stack]
stack))))
;; Replaces the first occurrence of the second element of the appropriately-typed
;; literal stack with the top element of the appropriately-typed literal stack
;; within the top item of the vector stack
(def _replacefirst
^{:stacks #{}}
(fn [stack state]
(let [lit-stack (utils/get-vector-literal-type stack)]
(make-instruction state
(fn [lit1 lit2 vect]
(assoc vect (utils/indexof lit1 vect) lit2))
[lit-stack lit-stack stack]
stack))))
;; Pushes the rest of the top item
(def _rest
^{:stacks #{}}
(fn [stack state]
(make-instruction state #(vec (rest %)) [stack] stack)))
;; Pushes the reverse of the top item
(def _reverse
^{:stacks #{}}
(fn [stack state]
(make-instruction state #(vec (reverse %)) [stack] stack)))
;; Replaces in the top vector the item at index N (taken from the INTEGER stack)
;; with the top item from the appropriately-typed literal stack. To insure the
;; index is within bounds, N is taken mod the vector length
(def _set
^{:stacks #{:integer}}
(fn [stack state]
(let [lit-stack (utils/get-vector-literal-type stack)]
(make-instruction state
(fn [lit n vect]
(assoc vect (mod n (count vect)) lit))
[:integer lit-stack stack]
stack))))
;; Pushes a subvector of the top item, with start and end indices determined by
;; the second and top items of the INTEGER stack respectively
(def _subvec
^{:stacks #{:integer}}
(fn [stack state]
(make-instruction state
(fn [stop-raw start-raw vect]
(let [start (min (count vect) (max 0 start-raw))
stop (min (count vect) (max start-raw stop-raw))]
(subvec vect start stop)))
[:integer :integer stack]
stack)))
;; Pushes the first N items of the top element, where N is taken from the top of
;; the INTEGER stack
(def _take
^{:stacks #{:integer}}
(fn [stack state]
(make-instruction state #(vec (take %1 %2)) [:integer stack] stack)))
;; 4 types x 20 functions = 80 instructions
(generate-instructions
[:vector_boolean :vector_float :vector_integer :vector_string]
[_butlast _concat _conj _contains _emptyvector _first _indexof _last
_length _nth _occurrencesof _pushall _remove _replace _replacefirst
_rest _reverse _set _subvec _take])
;; Manually add extra metadata for _conj

View File

@ -5,15 +5,12 @@
:boolean '()
:char '()
:code '()
:environment '()
:exec '()
:float '()
:genome '()
:input {}
:integer '()
:return '()
:output '()
:string '()
:tag '()
:vector_boolean '()
:vector_float '()
:vector_integer '()
@ -31,24 +28,41 @@
(empty? (get state stack)))
(defn peek-stack
"Returns top item on a stack."
"Returns the top item on a stack."
[state stack]
(let [working-stack (get state stack)]
(if (empty? working-stack)
:no-stack-item
(first working-stack))))
(defn peek-stack-multiple
"Returns the top n items on a stack. If there are less than n items on the
stack, returns the entire stack."
[state stack n]
(take n (get state stack)))
(defn pop-stack
"Removes top item of stack."
"Removes the top item of stack."
[state stack]
(update state stack rest))
(defn pop-stack-multiple
"Removes the top n items of a stack. If there are less than n items on the
stack, pops the entire stack."
[state stack n]
(update state stack #(drop n %)))
(defn push-to-stack
"Pushes item(s) onto stack."
"Pushes an item onto a stack."
[state stack item]
(update state stack conj item))
(defn push-to-stack-multiple
"Pushes a list of items onto a stack, leaving them in the order they are in."
[state stack items]
(let [items-list (if (coll? items) items (list items))
items-list-no-nil (filter #(not (nil? %)) items-list)]
(update state stack into items-list-no-nil)))
(update state stack into (reverse items-list-no-nil))))
(defn get-args-from-stacks
"Takes a state and a collection of stacks to take args from. If there are

View File

@ -1,5 +1,6 @@
(ns propeller.push.utils
(:require [propeller.push.core :as push]
(:require [clojure.set]
[propeller.push.core :as push]
[propeller.push.state :as state]))
(defmacro def-instruction
@ -20,14 +21,44 @@
(state/push-to-stack new-state return-stack result)))))
;; Given a sequence of stacks, e.g. [:float :integer], and a sequence of suffix
;; function strings, e.g. [_+, _*, _=], automates the generation of all possible
;; combination instructions, which here would be :float_+, :float_*, :float_=,
;; :integer_+, :integer_*, and :integer_=
(defmacro generate-functions [stacks functions]
;; function strings, e.g. [_add, _mult, _eq], automates the generation of all
;; possible combination instructions, which here would be :float_add, :float_mult,
;; :float_eq, :integer_add, :integer_mult, and :integer_eq, also transferring
;; and updating the generic function's stack-type metadata
(defmacro generate-instructions [stacks functions]
`(do ~@(for [stack stacks
function functions
:let [instruction-name (keyword (str (name stack) function))]]
`(def-instruction ~instruction-name (partial ~function ~stack)))))
func functions
:let [instruction-name (keyword (str (name stack) func))
metadata `(update-in (meta ~func) [:stacks] #(conj % ~stack))
new-func `(with-meta (partial ~func ~stack) ~metadata)]]
`(def-instruction ~instruction-name ~new-func))))
;; Given a set of stacks, returns all instructions that operate on those stacks
;; only. This won't include random or parenthesis-altering instructions unless
;; :random or :parentheses respectively are in the stacks set
(defn get-stack-instructions
[stacks]
(doseq [[instruction-name function] @push/instruction-table]
(assert
(:stacks (meta function))
(format "ERROR: Instruction %s does not have :stacks defined in metadata."
(name instruction-name))))
(for [[instruction-name function] @push/instruction-table
:when (clojure.set/subset? (:stacks (meta function)) stacks)]
instruction-name))
;; If a piece of data is a literal, return its corresponding stack name, e.g.
;; :integer. Otherwise, return nil"
(defn get-literal-type
[data]
(let [literals {:boolean (fn [thing] (or (true? thing) (false? thing)))
:char char?
:float float?
:integer integer?
:string string?}]
(first (for [[stack function] literals
:when (function data)]
stack))))
;; Pretty-prints a Push state, for logging or debugging purposes
(defn print-state

View File

@ -28,7 +28,7 @@
Accepts an argument map with optional keys :n, :mu, and :sigma."
[{:keys [n mu sigma]
:or {n 1, mu 0, sigma 1}}]
(repeatedly n #(box-muller (rand 1) (rand 1))))
(repeatedly n #(box-muller (rand) (rand))))
(defn pdf-norm
"Returns the value of the Normal Probability Distribution Function at a

View File

@ -1,8 +0,0 @@
(ns propeller.util)
(defn not-lazy
"Returns lst if it is not a list, or a non-lazy version of lst if it is."
[lst]
(if (seq? lst)
(apply list lst)
lst))

34
src/propeller/utils.clj Normal file
View File

@ -0,0 +1,34 @@
(ns propeller.utils)
(defn indexof
"Returns the first index of an element in a collection. If the element is not
present in the collection, returns -1."
[element coll]
(or (first (keep-indexed #(if (= element %2) %1) coll)) -1))
(defn not-lazy
"Returns lst if it is not a seq, or a non-lazy version of lst if it is."
[lst]
(if (seq? lst)
(apply list lst)
lst))
(defn ensure-list
"Returns a non-lazy list if passed a seq argument. Othwrwise, returns a list
containing the argument."
[thing]
(if (seq? thing)
(not-lazy thing)
(list thing)))
(defn random-instruction
"Returns a random instruction from a supplied pool of instructions, evaluating
ERC-producing functions to a constant literal."
[instructions]
(let [instruction (rand-nth instructions)]
(if (fn? instruction) (instruction) instruction)))
(defn get-vector-literal-type
"Returns the literal stack corresponding to some vector stack."
[vector-stack]
(keyword (clojure.string/replace (str vector-stack) ":vector_" "")))

View File

@ -1,5 +1,6 @@
(ns propeller.variation
(:require [propeller.selection :as selection]))
(:require [propeller.selection :as selection]
[propeller.utils :as utils]))
(defn crossover
"Crosses over two individuals using uniform crossover. Pads shorter one."
@ -21,7 +22,7 @@
[plushy instructions umad-rate]
(apply concat
(map #(if (< (rand) umad-rate)
(shuffle [% (rand-nth instructions)])
(shuffle [% (utils/random-instruction instructions)])
[%])
plushy)))