HushGP/src/Push.hs
2025-01-15 23:55:02 -06:00

148 lines
5.4 KiB
Haskell

{-# LANGUAGE DataKinds #-}
module Push where
-- import Debug.Trace (trace, traceStack)
import qualified Data.Map as Map
-- The exec stack must store heterogenous types,
-- and we must be able to detect that type at runtime.
-- One solution is for the exec stack to be a list of [Gene].
-- The parameter stack could be singular [Gene] or multiple [atomic] types.
data Gene
= IntGene Int
| FloatGene Float
| BoolGene Bool
| StringGene String
| StateFunc (State -> State)
| PlaceInput String
| Close
| Block [Gene]
instance Eq Gene where
IntGene x == IntGene y = x == y
FloatGene x == FloatGene y = x == y
BoolGene x == BoolGene y = x == y
StringGene x == StringGene y = x == y
PlaceInput x == PlaceInput y = x == y
Close == Close = True
StateFunc x == StateFunc y = True -- This line is probably not the best thing to do
Block [x] == Block [y] = [x] == [y]
_ == _ = False
instance Show Gene where
show (IntGene x) = "Int: " <> show x
show (FloatGene x) = "Float: " <> show x
show (BoolGene x) = "Bool: " <> show x
show (StringGene x) = "String: " <> x
show (StateFunc func) = "Func: unnamed"
show (PlaceInput x) = "In: " <> x
show Close = "Close"
show (Block xs) = "Block: " <> show xs
data State = State
{ exec :: [Gene],
int :: [Int],
float :: [Float],
bool :: [Bool],
string :: [String],
parameter :: [Gene],
input :: Map.Map String Gene
}
deriving Show
emptyState :: State
emptyState =
State
{ exec = [],
int = [],
float = [],
bool = [],
string = [],
parameter = [],
input = Map.empty
}
-- Each core func should be: (State -> State -> State)
-- but each core function can use abstract helper functions.
-- That is more efficient than checking length.
-- Everntually, this can be part of the apply func to state helpers,
-- which should take the number and type of parameter they have.
instructionIntAdd :: State -> State
instructionIntAdd (State es (i1 : i2 : is) fs bs ss ps im) = State es (i2 + i1 : is) fs bs ss ps im
instructionIntAdd state = state
instructionIntSub :: State -> State
instructionIntSub (State es (i1 : i2 : is) fs bs ss ps im) = State es (i2 - i1 : is) fs bs ss ps im
instructionIntSub state = state
instructionIntMul :: State -> State
instructionIntMul (State es (i1 : i2 : is) fs bs ss ps im) = State es (i2 * i1 : is) fs bs ss ps im
instructionIntMul state = state
instructionIntDiv :: State -> State
instructionIntDiv (State es (i1 : i2 : is) fs bs ss ps im) = State es (i2 `div` i1 : is) fs bs ss ps im
instructionIntDiv state = state
instructionExecIf :: State -> State
instructionExecIf (State (e1 : e2 : es) is fs (b : bs) ss ps im) =
case b of
True -> State (e1 : es) is fs bs ss ps im
False -> State (e2 : es) is fs bs ss ps im
instructionExecIf state = state
instructionExecDup :: State -> State
instructionExecDup (State alles@(e0 : es) is fs bs ss pm im) =
State (e0 : alles) is fs bs ss pm im
instructionExecDup state = state
instructionExecDoRange :: State -> State
instructionExecDoRange (State (e1 : es) (i0 : i1 : is) fs bs ss ps im) =
if increment i0 i1 /= 0
then State (e1 : Block [IntGene (i1 + increment i0 i1), IntGene i0, StateFunc instructionExecDoRange, e1] : es) (i1 : is) fs bs ss ps im
else State (e1 : es) (i1 : is) fs bs ss ps im
where
increment :: Int -> Int -> Int
increment destIdx currentIdx
| currentIdx < destIdx = 1
| currentIdx > destIdx = -1
| otherwise = 0
instructionExecDoRange state = state
-- This is one of the push genome functions itself, not infrastructure.
-- Optionally, split this off into independent functions
instructionParameterLoad :: State -> State
instructionParameterLoad (State es is fs bs ss (p : ps) im) = case p of
(IntGene val) -> State es (val : is) fs bs ss ps im
(FloatGene val) -> State es is (val : fs) bs ss ps im
(BoolGene val) -> State es is fs (val : bs) ss ps im
(StringGene val) -> State es is fs bs (val : ss) ps im
instructionParameterLoad state = state
-- Loads a genome into the exec stack
loadProgram :: [Gene] -> State -> State
loadProgram newstack (State _ i f b s p im) = State newstack i f b s p im
-- Takes a Push state, and generates the next push state via:
-- If the first item on the EXEC stack is a single instruction
-- then pop it and execute it.
-- Else if the first item on the EXEC stack is a literal
-- then pop it and push it onto the appropriate stack.
-- Else (the first item must be a list) pop it and push all of the
-- items that it contains back onto the EXEC stack individually,
-- in reverse order (so that the item that was first in the list
-- ends up on top).
-- The empty-stack safety of interpretExec on empty stacks depends on the functions it calls.
interpretExec :: State -> State
interpretExec (State [] is fs bs ss ps im) = State [] is fs bs ss ps im
interpretExec (State (e : es) is fs bs ss ps im) =
case e of
(IntGene val) -> interpretExec (State es (val : is) fs bs ss ps im)
(FloatGene val) -> interpretExec (State es is (val : fs) bs ss ps im)
(BoolGene val) -> interpretExec (State es is fs (val : bs) ss ps im)
(StringGene val) -> interpretExec (State es is fs bs (val : ss) ps im)
(StateFunc func) -> interpretExec (func (State es is fs bs ss ps im))
(Block block) -> interpretExec (State (block ++ es) is fs bs ss ps im)
(PlaceInput input) -> interpretExec (State (im Map.! input : es) is fs bs ss ps im)
-- Need to make interpretExec strict, right?